Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quyền Dương
Xem chi tiết
Phạm Quỳnh
28 tháng 8 2015 lúc 16:11

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+..+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)

\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)

\(\Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)

\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{1999}{2001}\)

\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{1999}{2001}\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{2001}:2\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{1999}{2001}:2=\frac{1}{2001}\Rightarrow x+1=2001\Rightarrow x=2000\)

hoangnhumai
17 tháng 2 2018 lúc 15:51

000000000000000000000000000

tang viet nhat
15 tháng 4 2018 lúc 9:13

bang 2000

hihi...sai do

Lê Trần Thảo Nguyên
Xem chi tiết
nguyenquymanh
Xem chi tiết
phạm quang huy
Xem chi tiết
An Đàm Chu Hữu
Xem chi tiết
Hồ Thu Giang
9 tháng 8 2015 lúc 13:19

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)}=\frac{1999}{2001}\)

\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)

\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1999}{2001}:2=\frac{1999}{4002}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{4002}\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{1999}{2001}=\frac{1}{2001}\)

=> x + 1 = 2001

=> x = 2001 - 1

=> x = 2000

Trần Đức Thắng
9 tháng 8 2015 lúc 13:19

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+..+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)

\(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+..+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)

   \(\frac{1}{6}+\frac{1}{12}+..+\frac{1}{x\left(x+1\right)}=\frac{1999}{2001}:\frac{1}{2}\)

  \(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{1999}{4002}\)

  \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{x}-\frac{1}{x+1}=\frac{1999}{4002}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{4002}\)

      \(\frac{1}{x+1}=\frac{1}{2}-\frac{1999}{4002}\)

    \(\frac{1}{x+1}=\frac{1}{2001}\)

=> x + 1 = 2001

=> x =    2001 - 1

=> x = 2000 

điên
Xem chi tiết
Nguyễn Ngọc Ánh
Xem chi tiết
Phương Trình Hai Ẩn
13 tháng 5 2017 lúc 20:39

\(\frac{1}{3}+....+\frac{2}{x.\left(x+1\right)}=\frac{1999}{2001}\)

=>\(\frac{1}{2}.\left(\frac{1}{3}+...+\frac{2}{x.\left(x+1\right)}\right)=\frac{1999}{2001}.\frac{1}{2}\)

\(\Rightarrow\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x.\left(x+1\right)}=\frac{1999}{4002}\)

\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=\frac{1999}{4002}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{4002}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2001}\)

=> x=2000

NGUYỄN HƯƠNG GIANG
13 tháng 5 2017 lúc 21:33

Tìm stn biết: 1/3 + 1/6 + 1/10 + ...+2/x(x+1)=1999/2001

Bài giải: Gọi x là số tự nhiên cần tìm

Cho S= 1/3 + 1/6 +1/10 +...+ 1/x(x+1)

\(\Rightarrow\)S= 2/6 + 2/12+ 2/20 +...+ 2/2[x(x+1)]

\(\Rightarrow\)1/2S= 1/2.3 + 1/3.4 + 1/ 4.5 +...+1/2[x(x+1)]

\(\Rightarrow\)1/2S=1/2-1/3+1/3-1/4+...+1/(x-1) .(x+1)

\(\Leftrightarrow\)1/2S=1/2-1/x+1

Vì S = 1999 / 2001\(\Rightarrow\)1/2S=1/2-1 . (x+1)=1999/2001-1998-2001=1/2001

\(\Rightarrow\)1/x+1=1/2001

\(\Leftrightarrow\)x+1=2001

         x =2001-1 =2000

Vậy số tự nhiên đó là: 2000

Đàm Chu Hữu An
Xem chi tiết
Trần Đức Thắng
9 tháng 8 2015 lúc 8:45

\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+..+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)

\(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+..+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)

\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{1999}{2001}:2\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{x}-\frac{1}{x+1}=\frac{1999}{4002}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{4002}\)

\(\frac{x+1-2}{2\left(x+1\right)}=\frac{1999}{4002}\Rightarrow\frac{x-1}{2\left(x+1\right)}=\frac{1999}{4002}\Leftrightarrow4002\left(x-1\right)=1999.2\left(x+1\right)\)

=> 4002x - 4002 = 3998x + 3998

=> 4002x - 3998x = 3998 + 4002

=> 4x               = 8000

=> x                  = 2000

Ngô Thu Thủy
24 tháng 3 2018 lúc 19:38

!/3+1/6+1/10+...+2/x(x+1)=1999/2001

1/6+1/12+1/20+...+2/x(x+1)=1999/2001

2(1/6+1/12+1/20+...+1/x(x+1)=1999/2001

1/6+1/12+1/20+1/x(x+1)=1999/2001:2

1/6+1/12+1/20+...+1/x(x+1)=1999/4002

1/2x3+1/3x4+1/4x5+...+1/x(x+1)=1999/4002

1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1=1999/4002

1/2-1/x+1=1999/4002

1/x+1=1/2-1999/4002

1/x+1=1/2001

=>x+1=2001

=>x=2001-1

=x=2000

Vậy x=2000.

Tran Thi Mai
5 tháng 4 2018 lúc 5:44

làm thế nào để ra 2/6 và 2/12 vậy

cychngthglcb
Xem chi tiết
Katherine Lilly Filbert
29 tháng 6 2015 lúc 9:05

Chưa chắc là đề sai!!!!!!!!!!!!!!

Kudo Shinichi
29 tháng 6 2015 lúc 9:19

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)

\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{2003}.\frac{1}{2}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Leftrightarrow\)\(\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2003}\)

\(x+1=2003\)

\(x=2002\)

ronaldoxunghe
29 tháng 6 2015 lúc 9:01

trong tương tự có bài giống