tìm STN x biết rằng : 1/3 + 1/6 + 1/10 + ... + 2/x(x+1) = 1999/2001
Tìm số tự nhiên x biết rằng :1/3+1/6+1/10+...+2/x(x+1)=1999/2001
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+..+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)
\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)
\(\Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{1999}{2001}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{1999}{2001}\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{2001}:2\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{1999}{2001}:2=\frac{1}{2001}\Rightarrow x+1=2001\Rightarrow x=2000\)
Tìm số tự nhiên x biết rằng 1/3+1/6+1/10+....+2/x(x+1)=1999/2001
Tìm các số nguyên x, y mà (x-1).(3-y) = 2
Tìm STN x, biết 1/3 +1/6+1/10+...+2/ x.(x+1)
Chứng minh rằng 1+1/2+1/3+...+1/21999>1000
Tìm X biết 1/3+1/6+1/10+...+2/Xx(X x 2)=1999/2001
tìm x thuộc n biết 1/3+1/6+1/10+...+2/x.(x+1)=1999/2001
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)}=\frac{1999}{2001}\)
\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)
\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1999}{2001}:2=\frac{1999}{4002}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{4002}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{1999}{2001}=\frac{1}{2001}\)
=> x + 1 = 2001
=> x = 2001 - 1
=> x = 2000
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+..+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)
\(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+..+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)
\(\frac{1}{6}+\frac{1}{12}+..+\frac{1}{x\left(x+1\right)}=\frac{1999}{2001}:\frac{1}{2}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{1999}{4002}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{x}-\frac{1}{x+1}=\frac{1999}{4002}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{4002}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{1999}{4002}\)
\(\frac{1}{x+1}=\frac{1}{2001}\)
=> x + 1 = 2001
=> x = 2001 - 1
=> x = 2000
tìm x thuộc N biết 1/3+1/6+1/10+...+2/x.(x+1)=1999/2001
Tìm số tự nhiên biết rằng: 1/3 + 1/6 + 1/10 +.....+ 2/ x(x+1) = 1999/2001
GIÚP MÌNH VỚI!!!!!!!!!! MÌNH ĐANG CẦN GẤP LẮM!!!!!!!!!!
\(\frac{1}{3}+....+\frac{2}{x.\left(x+1\right)}=\frac{1999}{2001}\)
=>\(\frac{1}{2}.\left(\frac{1}{3}+...+\frac{2}{x.\left(x+1\right)}\right)=\frac{1999}{2001}.\frac{1}{2}\)
\(\Rightarrow\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x.\left(x+1\right)}=\frac{1999}{4002}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=\frac{1999}{4002}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{4002}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2001}\)
=> x=2000
Tìm stn biết: 1/3 + 1/6 + 1/10 + ...+2/x(x+1)=1999/2001
Bài giải: Gọi x là số tự nhiên cần tìm
Cho S= 1/3 + 1/6 +1/10 +...+ 1/x(x+1)
\(\Rightarrow\)S= 2/6 + 2/12+ 2/20 +...+ 2/2[x(x+1)]
\(\Rightarrow\)1/2S= 1/2.3 + 1/3.4 + 1/ 4.5 +...+1/2[x(x+1)]
\(\Rightarrow\)1/2S=1/2-1/3+1/3-1/4+...+1/(x-1) .(x+1)
\(\Leftrightarrow\)1/2S=1/2-1/x+1
Vì S = 1999 / 2001\(\Rightarrow\)1/2S=1/2-1 . (x+1)=1999/2001-1998-2001=1/2001
\(\Rightarrow\)1/x+1=1/2001
\(\Leftrightarrow\)x+1=2001
x =2001-1 =2000
Vậy số tự nhiên đó là: 2000
tìm x thuộc N biết 1/3+1/6+1/10+...+2/x.(x+1)=1999/2001
\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+..+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)
\(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+..+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{1999}{2001}:2\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{x}-\frac{1}{x+1}=\frac{1999}{4002}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{4002}\)
\(\frac{x+1-2}{2\left(x+1\right)}=\frac{1999}{4002}\Rightarrow\frac{x-1}{2\left(x+1\right)}=\frac{1999}{4002}\Leftrightarrow4002\left(x-1\right)=1999.2\left(x+1\right)\)
=> 4002x - 4002 = 3998x + 3998
=> 4002x - 3998x = 3998 + 4002
=> 4x = 8000
=> x = 2000
!/3+1/6+1/10+...+2/x(x+1)=1999/2001
1/6+1/12+1/20+...+2/x(x+1)=1999/2001
2(1/6+1/12+1/20+...+1/x(x+1)=1999/2001
1/6+1/12+1/20+1/x(x+1)=1999/2001:2
1/6+1/12+1/20+...+1/x(x+1)=1999/4002
1/2x3+1/3x4+1/4x5+...+1/x(x+1)=1999/4002
1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1=1999/4002
1/2-1/x+1=1999/4002
1/x+1=1/2-1999/4002
1/x+1=1/2001
=>x+1=2001
=>x=2001-1
=x=2000
Vậy x=2000.
tìm số nguyên x biết rằng
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)
Chưa chắc là đề sai!!!!!!!!!!!!!!
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)
\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{2003}.\frac{1}{2}=\frac{2001}{4006}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\Leftrightarrow\)\(\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2001}{4006}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2003}\)
\(x+1=2003\)
\(x=2002\)