Bài 5 :
a) Cho P = ( y+4) / căn y + 2. Tìm giá trị nhỏ nhất của P
tìm giá trị nhỏ nhất của biểu thức sau:
a, y=2+ căn bậc hai của x^2-4x+5
b, căn bậc hai của (x^2/4) - (x/6) + 1
làm hộ bài này Cho 2 số thực dương x,y. Tìm giá trị nhỏ nhất của biểu thức P=căn[x^3/(x^3+8y^3)]+căn{4y^3/[y^3+(x+y)^3]}
làm hộ bài này Cho 2 số thực dương x,y. Tìm giá trị nhỏ nhất của biểu thức P=căn[x^3/(x^3+8y^3)]+căn{4y^3/[y^3+(x+y)^3]}
làm hộ bài này Cho 2 số thực dương x,y. Tìm giá trị nhỏ nhất của biểu thức P=căn[x^3/(x^3+8y^3)]+căn{4y^3/[y^3+(x+y)^3]}
\(\sqrt{\frac{x^3}{x^3+8}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)
Giúp mình bài này với!Có kèm lời giải thì càng tốt nha!Thanks!
1.Cho a,b,c là 3 số thực thỏa mãn a.b.c=1
Giá trị nhỏ nhất cua A=a^2:(1+b)+b^2:(1+c)+c^2:(1+a)
2.Với -4<x<9 .Tìmgiá trị nhỏ nhất của P=1:(9-x)+1:(x+4)
3.Cho x,y thỏa mãn x^2.(x^2+2y^2-3)+(y^2-2)^2=1
Tìm GTLN và GTNN của A=x^2+y^2
4.Tìm giá trị lớn nhất của A=Căn bậc hai (3-a)+a
5.Choa,b>0 và 3a-5b=12
Tìm GTLN của P=a.b
Giúp mình bài này với!Có kèm lời giải thì càng tốt nha!Thanks!
1.Cho a,b,c là 3 số thực thỏa mãn a.b.c=1
Giá trị nhỏ nhất cua A=a^2:(1+b)+b^2:(1+c)+c^2:(1+a)
2.Với -4<x<9 .Tìmgiá trị nhỏ nhất của P=1:(9-x)+1:(x+4)
3.Cho x,y thỏa mãn x^2.(x^2+2y^2-3)+(y^2-2)^2=1
Tìm GTLN và GTNN của A=x^2+y^2
4.Tìm giá trị lớn nhất của A=Căn bậc hai (3-a)+a
5.Choa,b>0 và 3a=5b=12
Tìm GTLN của P=a.b
Chi biet phan 5 thoi @
Vi 3a=5b=12suy ra a=4 ;b=2,4 ta co p=a.b suy ra p=4×2.4=9.6 suy ra p>[=9.6 gtln=9.6
nguyen xuan duong sr minh viet nham dau bai 3a-5b=12
Giúp mình bài này với!Có kèm lời giải thì càng tốt nha!Thanks!
1.Cho a,b,c là 3 số thực thỏa mãn a.b.c=1
Giá trị nhỏ nhất cua A=a^2:(1+b)+b^2:(1+c)+c^2:(1+a)
2.Với -4<x<9 .Tìmgiá trị nhỏ nhất của P=1:(9-x)+1:(x+4)
3.Cho x,y thỏa mãn x^2.(x^2+2y^2-3)+(y^2-2)^2=1
Tìm GTLN và GTNN của A=x^2+y^2
4.Tìm giá trị lớn nhất của A=Căn bậc hai (3-a)+a
5.Choa,b>0 và 3a=5b=12
Tìm GTLN của P=a.b
Giả sử x, y là các số dương thoả mãn đẳng thức: x + y = căn bậc 2 của 10
Tìm giá trị của x và y để biểu thức: P = (x4 + 1)(y4 + 1) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất ấy.
P = x4.y4 + x4 + y4 + 1
Ta có: x2 + y2 = (x + y)2 - 2xy = 10 - 2xy => x4 + y4 = (x2 + y2)2 - 2x2y2 = (10 - 2xy)2 - 2(xy)2 = 100 - 40xy + 2(xy)2
=> P = (xy)4 + 2(xy)2 - 40xy + 101 = [(xy)4 - 8(xy)2 + 16] + 10.[(xy)2 - 4xy + 4] + 45 = [(xy)2 - 4]2 + 10.(xy - 2)2 + 45
=> P > 45
Dấu "=" xảy ra <=> xy = 2
Mà có x + y = \(\sqrt{10}\) => x = \(\sqrt{10}\) - y => xy = \(\sqrt{10}\)y - y2 = 2 => y2 - \(\sqrt{10}\).y + 2 = 0
\(\Delta\) = 10 - 8 = 2 => \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)=> x = \(\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)
vậy P nhỏ nhất bằng 45 khi x = \(\frac{\sqrt{10}-\sqrt{2}}{2}\); \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)
hok giỏi nhưng cx có bài bế tắc chứ bộ đâu fai hok giỏi nhất thiết là cái gì cx biết đâu
Miki Thảo ơi,mk đồng ý zới ý kiến của bn!
Giả sử x, y là các số dương thoả mãn đẳng thức: x + y = căn bậc 2 của 10
Tìm giá trị của x và y để biểu thức: P = (x4 + 1)(y4 + 1) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất ấy.
P = x4.y4 + x4 + y4 + 1
Ta có: x2 + y2 = (x + y)2 - 2xy = 10 - 2xy => x4 + y4 = (x2 + y2)2 - 2x2y2 = (10 - 2xy)2 - 2(xy)2 = 100 - 40xy + 2(xy)2
=> P = (xy)4 + 2(xy)2 - 40xy + 101 = [(xy)4 - 8(xy)2 + 16] + 10.[(xy)2 - 4xy + 4] + 45 = [(xy)2 - 4]2 + 10.(xy - 2)2 + 45
=> P > 45
Dấu "=" xảy ra <=> xy = 2
Mà có x + y = \(\sqrt{10}\) => x = \(\sqrt{10}\) - y => xy = \(\sqrt{10}\)y - y2 = 2 => y2 - \(\sqrt{10}\).y + 2 = 0
\(\Delta\) = 10 - 8 = 2 => \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)=> x = \(\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)
vậy P nhỏ nhất bằng 45 khi x = \(\frac{\sqrt{10}-\sqrt{2}}{2}\); \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)