Cho \(\frac{a}{b}=\frac{c}{d}\). So sánh \(\frac{a+b}{c+d}\) và \(\frac{a-b}{c-d}\)
Cho a, b, c, d, sao cho:\(\frac{a}{b}< \frac{c}{d}\)và a+c=b+d. So sánh \(\frac{a}{b};\frac{c}{d}\)và 1.
so sánh tổng sau với 1 và 2
\(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}\)(a,b,c,d \(\in\)N*)
Ta có :\(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=\frac{a+b+c+d}{a+b+c+d}=1\)và \(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}<\frac{2a}{a+b+c+d}+\frac{2b}{a+b+c+d}+\frac{2c}{a+b+c+d}+\frac{2d}{a+b+c+d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)
So sánh tổng sau với 1 và 2:
\(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}\)(a,b,c,d \(\in\)N*)
So sánh tổng sau với 1 và 2: \(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}\)(a,b,c,d \(\in\)N*)
So sánh tổng sau với 1 và 2
\(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}\)(a,b,c,d \(\in\)N*)
Đặt A=a/b+c+d + b/c+d+a +c/d+a+b +d/a+b+c
4+A=a/b+c+d +1 + b/c+d+a +1 + c/d+a+b +1 + d/a+b+c +1
4+A=2a/a+b+c+d + 2b/a+b+c+d + 2c/a+b+c+d +2d/a+b+c+d
4+A=2a+2b+2c+2d/a+b+c+d
4+A=2(a+b+c+d) /a+b+c+d
4+A=2
A=2-4= -2
=) A<1<2
Cho a, b, c, d là các số thực dương thỏa mãn \(\frac{a}{b}< \frac{c}{d}\). Hãy so sánh \(\frac{a}{b}với\frac{a+c}{b+d}\)
\(\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow ad< bc\)
\(\Rightarrow ad+ab< bc+ab\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)
Vậy \(\frac{a}{b}< \frac{a+c}{b+d}\)
Cho \(\frac{c}{d}< \frac{a}{b}< 1,a,b,c,d\) là những số nguyên dương. Hãy so sánh \(\frac{a}{b},\frac{c}{d}\) với \(\frac{a+d}{b+c}\)
Cho a;b;c;d là bốn só thực dương. Hãy so sánh\(\frac{a}{a+b+c};\frac{a}{a+b};\frac{a}{a+b+c+d}\)
1) Cho a,b,c,d,e,g. Biết b,d,g>0
ad - bc = 2009 ; cg - de = 2009
a/ So sánh \(\frac{a}{b}\) ; \(\frac{c}{d}\); \(\frac{e}{g}\)
b/ So sánh : \(\frac{c}{d}\)và \(\frac{a+e}{b+g}\)