Tứ giác ABCD có góc A=góc B, BC=AD. Chứng minh ABCD là hình thang cân.
Cho tứ giác ABCD có góc A= góc B, AD=BC. Chứng minh tứ giác ABCD là hình thang cân
Xét ΔADB và ΔBCA có
AD=BC
\(\widehat{DAB}=\widehat{CBA}\)
AB chung
Do đó: ΔADB=ΔBCA
Suy ra: DB=CA
Xét ΔACD và ΔBDC có
AC=BD
DC chung
AD=BC
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{ADC}=\widehat{BCD}\)
Xét tứ giác ABCD có
\(\widehat{DAB}+\widehat{ABC}+\widehat{ADC}+\widehat{BCD}=360^0\)
\(\Leftrightarrow2\cdot\left(\widehat{DAB}+\widehat{ADC}\right)=360^0\)
\(\Leftrightarrow\widehat{DAB}+\widehat{ADC}=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AB//CD
Xét tứ giác ABCD có AB//CD
nên ABCD là hình thang
mà AC=BD
nên ABCD là hình thang cân
cho tứ giác ABCD có: góc A = 110 độ, góc B = 70 độ. AB=BC=AD. chứng minh tứ giác ABCD là hình thang cân???
Kẻ .BN vuông AD, BM vuông CD
Xét tam giác vuông BNA và BMD có
+ AB = BC
+ BNA = 1800 - BAD = 700 nên BAN = BCD = 700
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn)
Suy ra : BN = BM => BD là phân giác góc D
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (1800 - 1100) :2 = 350
=>ADC = 700
Do ADC + BAD = 1800 => AB song song CD
VÀ BCD = ADC =700
=> tứ giác ABCD là hình thang cân (đpcm)
chúc bạn học giỏi!! ^^
ok mk nhé!! 3564774734563476576855957234234342342323435345345456465465475676578658563463434
Cho tam giác ABCD có góc A = góc B và AD = BC. Chứng minh rằng tứ giác ABCD là hình thang cân.
Xét \(\Delta BAD\)và \(\Delta ABC\)có:
\(\widehat{A}=\widehat{B}\)
\(AD=BC\)
\(AB\)chung
\(\Rightarrow\Delta BAD=\Delta ABC\left(c.g.c\right)\)
\(\Rightarrow AC=BD\)(2 cạnh t.ư)
=>tứ giác ABCD là HTC
Cách 1 : Kẻ thêm đường phụ AC
Và đường phụ BD
Xét tam giác ADC và tam giác ABC ta có :
AC chung
AD = BC (gt)
^A = ^B (gt)
=> tam giác ADC = tam giác ABC
=> AB = DC ( 2 cạnh tương ứng bằng nhau )
hay 2 góc kề cạnh đáy bằng nhau => ABCD là hình thang
Cách 2 : Ta có : AD = BC gt
=> 2 cạnh bên bằng nhau Vậy ABCD là hình thang :))
Giải giùm mk nhé :)
a) Tứ giác ABCD có AB= CD ;AC=BD. Chứng minh ABCD là hinhg thang cân
b) Tứ giác ABCD có AD=AB=BC và góc A+góc C = 180o. Chứng minh ABCD là hình thang cân
A) Tứ giác ABCD có AB = CD, AC = BD. Chứng minh ABCD là hình thang cân
B) Tứ giác ABCD có AD = AB = BC và góc A+góc C=180 độ. Chứng minh ABCD là hình thang cân
Mng vẽ hình ra nháp dùm mình nha xong rồi ib mail mình cho card 20k (nkhaduy@gmail.com)
Tứ giác ABCD có AB = BC = AD , góc A = 110 , góc B = 70 . Chứng minh rằng :
a) DB là tia phân giác góc B
b) Tứ giác ABCD là hình thang cân
Kẻ .BN vuông AD, BM vuông CD
Xét tam giác vuông BNA và BMD có
+ AB = BC
+ BNA = 180* - BAD = 70* nên BAN = BCD = 70*
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn)
Suy ra : BN = BM => BD là phân giác góc D (đpcm)
b/
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (180*-110*) :2 = 35*
=>ADC = 70*
Do ADC + BAD = 180* => AB song song CD
VÀ BCD = ADC =70*
=> tứ giác ABCD là htc (đpcm)
Kẻ .BN vuông AD, BM vuông CD
Xét tam giác vuông BNA và BMD có
+ AB = BC
+ BNA = 180* - BAD = 70* nên BAN = BCD = 70*
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn)
Suy ra : BN = BM => BD là phân giác góc D (đpcm)
b/
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (180*-110*) :2 = 35*
=>ADC = 70*
Do ADC + BAD = 180* => AB song song CD
VÀ BCD = ADC =70*
=> tứ giác ABCD là htc (đpcm)
a﴿ Kẻ BN vuông AD, BM vuông CD
Xét tam giác vuông BNA và BMD có
: AB = BC ; góc BNA = 180 độ
‐ góc BAD = 70 độ
nên góc BAN = góc BCD = 70 độ
=> tam giác BMD = tam giác BND ﴾cạnh huyền ‐ góc nhọn﴿
=> BN = BM => BD là phân giác góc D
b﴿ Nối B vs D, do AB = AD nên tam giác ABD cân tại A
khi đó góc ADB = ﴾180 ‐110) :2= 35 độ
=> góc ADC = 70 Do góc ADC + góc BAD = 180 => AB // CD
Và góc BCD = góc ADC = 70 độ
=> ABCD là hình thang cân
Tứ giác ABCD có AB = BC = AD , góc A = 110 , góc B = 70 . Chứng minh rằng :
a) DB là tia phân giác góc B
b) Tứ giác ABCD là hình thang cân
nam cao copy tại https://vn.answers.yahoo.com/question/index?qid=20120905071415AAmqNM6
a, Kẻ .BN vuông AD, BM vuông CD
Xét tam giác vuông BNA và BMD có
+ AB = BC
+ BNA = 180* - BAD = 70* nên BAN = BCD = 70*
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn)
Suy ra : BN = BM => BD là phân giác góc D (đpcm)
b/
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (180*-110*) :2 = 35*
=>ADC = 70*
Do ADC + BAD = 180* => AB song song CD
VÀ BCD = ADC =70*
=> tứ giác ABCD là htc (đpcm)
tứ giác ABCD có góc A + góc C = 180 độ
nên tứ giác ABCD nội tiếp đường tròn
nên góc ADB = ACB ( 2 góc cùng chắn cung AB)
Mà góc ACB = BAC ( tam giác ABC cân tại B do AB = BC )
và góc BAC = BDC ( cùng chắn cung BC)
==>> góc ADB = BDC (1)
nên DB là tia phân giác của góc D
Ta có góc ADB = ABD ( tam giác ADB cân tại A do AD = AB ) (2)
Từ (1), (2) ta suy ra góc ABD = BDC
mà 2 góc này ở vị trí so le trong so với 2 đoạn AB và CD
do đó AB // CD
==> ABCD là hình thang
mà AD = BC nên ABCD là hình thang cân
Cho tứ giác ABCD có góc A=góc B, BC=AD. Chứng minh :
a) ΔACD=ΔBDC
b) ABCD là hình thang cân
a, Xét \(\Delta ADC\) và \(\Delta BCD\) có :
AD=BC ( gt)
AC=BD ( gt )
DC chung:
=> \(\Delta ADC\) = \(\Delta BCD\) ( đpcm)
b, Vì góc D = góc C nên ABCD là hình thang cân
Tk mk nha
Tứ giác ABCD có AB=BC=AD, góc A=100 độ, góc C=80 độ. Chứng minh rằng:
a) DB là tia phân giác của góc D
b) ABCD là hình thang cân.
a: góc A+góc C=180 độ
=>ABCD là tứ giác nội tiếp
ABCD là tứ giác nội tiếp
=>góc ADB=góc ACB và góc BDC=góc BAC
mà góc BCA=góc BAC(ΔBAC cân tại B)
nên góc ADB=góc BDC
=>DB là phân giác của góc ADC
b: ΔABD cân tại A
=>góc ABD=góc ADB
=>góc ABD=góc BDC
=>AB//CD
Xét tứ giác ABCD có
AB//CD
=>ABCD là hình thang
=>góc BAD+góc ADC=180 độ
mà góc A+góc C=180 độ
nên góc ADC=góc C
=>ABCD là hình thang cân