Giải hpt: \(\hept{\begin{cases}\left(x+y\right)\left(x^2-y^2\right)=45\\\left(x-y\right)\left(x^2+y^2\right)=85\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}\left(x+y\right)\left(x^2-y^2\right)=45\\\left(x-y\right)\left(x^2+y^2\right)=85\end{cases}}\)
12y=3x−5⇔{x=−12y=3.−12−5" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:18.72px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; text-align:left; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
12y=−132" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:18.72px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; text-align:left; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
−12;−132)" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:18.72px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; text-align:left; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
.−12y=x−6⇔{x=−12y=−132" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:18.72px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; text-align:left; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
−12;−132)" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:18.72px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; text-align:left; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
.b) Thu gọn vế trái của hai phương trình, ta được:
⇔
⇔ ⇔
⇔⇔
⇔ ⇔
Vậy hệ phương trình đã cho có nghiệm duy nhất là .
Bạn kham khảo nhé.
Giải hệ phương trình (x+y)(x^2-y^2)=45 và (x-y)(x^2+y^2)=85
Giải HPT: \(\hept{\begin{cases}\left(x-y\right)\left(x^2+y^2\right)=5\\\left(x+y\right)\left(x^2-y^2\right)=9\end{cases}}\)
hệ pt <=> (x-y).(x^2+y^2) = 5
(x+y)^2.(x-y) = 9
+, Nếu x=y => hệ pt vô nghiệm [ vì 9 khác (x+y)^2.0 ]
=> x khác y
=> x-y khác 0
Chia vế theo vế của 2 pt trong hệ pt ta được :
x^2+y^2/(x+y)^2 = 5/9
<=> 9.(x^2+y^2) = 5.(x+y)^2
<=> 9.(x^2+y^2)-5.(x+y)^2 = 0
<=> 4x^2-10xy+4y^2 = 0
<=> (4x^2-8xy)-(2xy-4y^2) = 0
<=> (x-2y).(4x-2y) = 0
<=> (x-2y).(2x-y) = 0
<=> x=2y hoặc x=1/2.y
Đến đó bạn thay vào 1 trong 2 pt để giải nha
Tk mk nha
Giải HPT: \(\hept{\begin{cases}\left(x-y\right)\left(x^2+y^2\right)=5\\\left(x+y\right)\left(x^2-y^2\right)=9\end{cases}}\)
Giải hpt
a/\(\hept{\begin{cases}\left|x\right|+4\left|y\right|=18\\3\left|x\right|+\left|y\right|=10\end{cases}}\)
b/ \(\hept{\begin{cases}3\sqrt{x}+2\sqrt{y}=16\\2\sqrt{x}-3\sqrt{y}=-11\end{cases}}\)
giải hpt\(\hept{\begin{cases}\left(x+1\right)^2\left(y+1\right)^2=27xy\\\left(x^2+1\right)\left(y^2+1\right)=10xy\end{cases}}\)
Giải hpt: \(\hept{\begin{cases}\left(x+y\right)^2+\sqrt{3\left(x+y\right)}=\sqrt{2\left(x+y+1\right)}+4\\\left(x^2+y-2\right)\sqrt{2x+1}=x^3+2y-5\end{cases}}\)
Giải hệ phương trình:
1) \(\hept{\begin{cases}\sqrt[3]{x-y}=\sqrt{x-y}\\x+y=\sqrt{x+y+2}\end{cases}}\)
2) \(\hept{\begin{cases}x-\frac{1}{x}=y-\frac{1}{y}\\2y=x^3+1\end{cases}}\)
3) \(\hept{\begin{cases}\left(x-y\right)\left(x^2+y^2\right)=13\\\left(x+y\right)\left(x^2-y^2\right)=25\end{cases}\left(x;y\in R\right)}\)
4) \(\hept{\begin{cases}3y=\frac{y^2+2}{x^2}\\3x=\frac{x^2+2}{y^2}\end{cases}}\)
5) \(\hept{\begin{cases}x+y-\sqrt{xy}=3\\\sqrt{x+1}+\sqrt{y+1}=4\end{cases}\left(x;y\in R\right)}\)
6) \(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}\left(x;y\in R\right)}\)
7) \(\hept{\begin{cases}\left(x^2+1\right)+y\left(y+x\right)=4y\\\left(x^2+1\right)\left(y+x-2\right)=y\end{cases}\left(x;y\in R\right)}\)
8) \(\hept{\begin{cases}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{cases}}\)
giải hpt
a) \(\hept{\begin{cases}x\left(x+2\right)\left(3x+y\right)=64\\x^2+5x+y=16\end{cases}}\)
b)\(\hept{\begin{cases}2x-2y-xy=8+12\sqrt{2}\\\left(x-y\right)^2+2xy=24\end{cases}}\)
a) \(\hept{\begin{cases}x\left(x+2\right)\left(3x+y\right)=64\left(1\right)\\x^2+5x+y=16\left(2\right)\end{cases}}\)
từ pt (2) \(\Rightarrow y=16-x^2-5x\)thay vào pt (1), ta được:
\(\left(x^2+2x\right)\left(3x+16-x^2-5x\right)=64\)
nhân ra giải phương trình rồi tìm x, tự lm nhé.
b) Hệ pt \(\Leftrightarrow\hept{\begin{cases}2\left(x-y\right)-xy=8+12\sqrt{2}\\\left(x-y\right)^2+2xy=24\end{cases}}\)
Đặt a=x-y; b=xy, thay vào hệ, giải bằng phương pháp cộng tìm a;b, thay số tìm x;y. Tự lm nhé
Giải hpt:\(\hept{\begin{cases}x\left(x^2+y^2\right)+y\left(xy+12\right)=0\\x^2+4\left(2y^2-3\right)=0\end{cases}}\)