Chứng tỏ đa thức A=\(\frac{2}{x^4-1}+\frac{1}{1-x^2}\) luôn có giá trị âm với mọi x khác -1;1
A=\(\frac{1}{x-2}\)+\(\frac{1}{x+2}\) +\(\frac{x^2+1}{x^2-4}\) (với x khác 2,-2)
rút gọn A
CHỨNG TỎ RẰNG VỚI MỌI X THỎA MÃN -2<X<2,X KHÁC -1 PHÂN THỨC LUÔN CÓ GIÁ TRỊ ÂM
\(A=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}=\)\(\frac{x+2}{x^2-4}+\frac{x-2}{x^2-4}+\frac{x^2+1}{x^2-4}=\)\(\frac{x+2+x-2+x^2+1}{x^2-4}=\)
=(x^2+2x+1)/(x-2)(x+2)=(x+1)^2/(x-2)(x+2)
Vì x>-2 và x<2 nên (x-2)<0, x+2>0, \(\left(x+1\right)^2>0\). Suy ra A<0
c1 Tìm số nguyên tố x thỏa mãn :x^2-4x-21=0
c2/ \(y=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}\)với x khác +-2
a/Rút gọn biểu thức Y
b/chứng tỏ rằng mọi x thỏa mãn -2<x<2, x khác-1 biểu thức A luôn có giá trị âm
A=(x^2+1)/1 chứng tỏ với mọi x thoả mãn -2<x<2, x khác -1 phân thức luôn có giá trị âm
bạn có chắc đúng đề không vậy vì \(\frac{x^2+1}{1}>0 \text{ Với mọi x}\)
1.Cho biểu thức: Q= \(\frac{x+3}{2x+1}-\frac{x-7}{2x+1}\)
a). Thu gọn biểu thức
b) Tìm các giá trị nguyên của x để Q nhận giá trị nguyên
2. Cho biểu thức A =\(\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}\)với x khác cộng trừ 2
a) rút gọn biểu thức A
b) chứng tỏ rằng với mọi x thỏa mãn -2<x <2, x khác - 1 phân thức luôn có giá trị âm
( các bạn giúp mình nha, cảm ơn nhiều)
Cho biểu thức A= \(\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}\)
a. Tìm điều kiện xác định và rút gọn biểu thức A
b. Chứng tỏ rằng với mọi x thỏa mãn\(-2< x< 2,x\ne1\)phân thức luôn có giá trị âm
\(a,Đkxđ:x\ne\pm2\)
\(A=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}\)
\(=\frac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{\left(x+1\right)^2}{x^2-4}\)
b, Ta có: \(\left(x-2\right)\left(x+2\right)< 0;\forall-2< 2< 2;x\ne-1\)
Mà: \(\left(x+1\right)^2>0\left(\forall x\ne-1\right)\)
\(\Rightarrow\frac{\left(x+1\right)^2}{\left(x+2\right)\left(x-2\right)}< 0;\forall-2< x< 2;x\ne-1\)
Vậy ............
cho biểu thức A=1/x-2+1/x+2+x^2+1/x^2-4 ( với x khác cộng trừ 2)
a) rút gọn biểu thức A
b) Chứng tỏ rằng với mọi x thỏa mãn -2<x<2, x khác -1 phân thức luôn có giá trị âm.
cho biểu thức \(A=\frac{1}{x+2}+\frac{1}{x-2}+\frac{x^2+1}{x^2+4}\)(với \(x\ne\pm2\))
rút gọn biểu thức Achứng tỏ rằng với mọi x thỏa mãn \(-2< x< 2,x\ne-1\)biểu thức A luôn có giá trị âm\(A=\frac{1}{x+2}+\frac{1}{x-2}+\frac{x^2+1}{x^2-4}\)
\(=\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{x+2}{\left(x-2\right)\left(x+2\right)}+\frac{x^2+1}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}\)
Với \(\forall x\in\left[-2;2\right]\) thì \(\left(x-2\right)\left(x+2\right)< 0\Rightarrow\frac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}< 0\Rightarrow A< 0\)
Chứng tỏ rằng với mọi x thỏa mãn -2<x<2,x khác -1 phân thức luôn có giá trị âm.
Bài 1 tìm GTLN
(1-3x)(x+2)
Bài 2 Ct đa thức sau ko có nghiệm
A=x²+2x+7
Bài 3 Chứng tỏ rằng đa thức sau luôn dương vs mọi giá trị của biến
M=x²+2x+7
Bài 4 Chứng tỏ đa thức sau luôn ko dương vs mọi giá trị của biến
A=-x²+18x-81
Bài 5 Chứng tỏ các biểu thức sau luôn ko âm vs mọi giá trị của biến
F=-x²-4x-5
Bài 1.
( 1 - 3x )( x + 2 )
= 1( x + 2 ) - 3x( x + 2 )
= x + 2 - 3x2 - 6x
= -3x2 - 5x + 2
= -3( x2 + 5/3x + 25/36 ) + 49/12
= -3( x + 5/6 )2 + 49/12 ≤ 49/12 ∀ x
Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6
Vậy GTLN của biểu thức = 49/12 <=> x = -5/6
Bài 2.
A = x2 + 2x + 7
= ( x2 + 2x + 1 ) + 6
= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x
=> A vô nghiệm ( > 0 mà :)) )
Bài 3.
M = x2 + 2x + 7
= ( x2 + 2x + 1 ) + 6
= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x
=> đpcm
Bài 4.
A = -x2 + 18x - 81
= -( x2 - 18x + 81 )
= -( x - 9 )2 ≤ 0 ∀ x
=> đpcm
Bài 5. ( sửa thành luôn không dương nhé ;-; )
F = -x2 - 4x - 5
= -( x2 + 4x + 4 ) - 1
= -( x + 2 )2 - 1 ≤ -1 < 0 ∀ x
=> đpcm
Bài 2
Ta có A = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0
Đa thức A vô nghiệm
Bại 3: Ta có M = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0 (đpcm)
Bài 4 Ta có A = -x2 + 18x - 81 = -(x2 - 18x + 81) = -(x - 9)2 \(\le0\)(đpcm)
Bài 5 Ta có F = -x2 - 4x - 5 = -(x2 + 4x + 5) = -(x2 + 4x + 4) - 1 = -(x + 2)2 - 1 \(\le\)-1 < 0 (đpcm)