Cho a , b thuộc N với a là số lẻ
Chứng minh rằng các số a và ab + 4 nguyên tố cùng nhau
Cho a , b thuộc N với a số lẻ
Chứng minh rằng các số a và ab + 4 nguyên tố cùng nhau
Goi d la UCLN(a;ab+4)
Ta co:
+/a chia het cho d(1)
+/ab+4 chia het cho d(2)
Tu (1)=>ab chia het cho d(3)
Tu (2) va (3) =>4 chia het cho d
=>d thuoc tap hop cac uoc cua 4
ma a la stnhien le =>d le
=>d=1
=>a va ab+4 nguyen to cung nhau
cho a,b thuộc N
chứng minh rằng các số a và ab + 4 nguyên tố cùng nhau
CHỨNG MINH RẰNG:
A, VỚI N THUỘC N THÌ N VÀ 2N+ 1 LÀ 2 SỐ GUYÊN TỐ CÙNG NHAU
B, VỚI N LẺ THÌ ( N-1 ) ( N + 1 ) ( N + 3 ) ( N + 5 ) CHIA HẾT CHO 384
C, VỚI A ,B,C,D LÀ CÁC SỐ TỰ NHIÊN KHÁC 0 ,P NGUYÊN TỐ VÀ AB+ CD = P THÌ A,C LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU
Câu a)
Giả sử k là ước của 2n+1 và n
Ta có
\(2n+1⋮k\)
\(n⋮k\)
Suy ra
\(2n+1⋮k\)
\(2n⋮k\)
Suy ra \(2n+1\)là số lẻ (với mọi giá trị n thuộc N)
Suy ra \(2n\)là số chẵn (với mọi giá trị n thuộc N)
Mà 2 số trên là 2 số tự nhiên liên tiếp
Suy ra \(2n+1\)và \(2n\)là 2 số nguyên tố cùng nhau
Vậy \(2n+1\)và \(n\)là 2 số nguyên tố cùng nhau (đpcm)
Câu b)
Vì n lẻ nên
(n-1) là số chẵn
(n+1) là số chẵn
(n+2) là số chẵn
(n+5) là số chẵn
Suy ra (n-1)(n+1)(n+2)(n+5) là số chẵn
Mà nếu n=1 thì (n-1)(n+1)(n+3)(n+5) chia hết tất cả các số tự nhiên (khác 0)
Mà nếu n=3 thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384
Mà nếu n=5 thì thành biểu thức trên bị biến đổi thành (n+1)(n+3)(n+5)(n+7) với n=3
Suy ra n=5 thì biểu thức trên vẫn chia hết cho 384
Vậy nếu n là lẻ thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384 (đpcm)
Câu c)
Đang thinking .........................................
LÊ NHẬT KHÔI ƠI BẠN LÀM CÓ ĐÚNG KO??? GIÚP MÌNH CÂU C VƠI NHA !!!
Giả sử k là ước của 2n+1 và n
Ta có
2n+1⋮k
n⋮k
Suy ra
2n+1⋮k
2n⋮k
Suy ra 2n+1là số lẻ (với mọi giá trị n thuộc N)
Suy ra 2nlà số chẵn (với mọi giá trị n thuộc N)
Mà 2 số trên là 2 số tự nhiên liên tiếp
Suy ra 2n+1và 2nlà 2 số nguyên tố cùng nhau
Vậy 2n+1và nlà 2 số nguyên tố cùng nhau (đpcm)
Câu b)
Vì n lẻ nên
(n-1) là số chẵn
(n+1) là số chẵn
(n+2) là số chẵn
(n+5) là số chẵn
Suy ra (n-1)(n+1)(n+2)(n+5) là số chẵn
Mà nếu n=1 thì (n-1)(n+1)(n+3)(n+5) chia hết tất cả các số tự nhiên (khác 0)
Mà nếu n=3 thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384
Mà nếu n=5 thì thành biểu thức trên bị biến đổi thành (n+1)(n+3)(n+5)(n+7) với n=3
Suy ra n=5 thì biểu thức trên vẫn chia hết cho 384
Vậy nếu n là lẻ thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384 (đpcm)
CHỨNG MINH RẰNG:
A, VỚI N THUỘC N THÌ N VÀ 2N + 1 LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU
B, VỚI N LẺ THÌ ( N - 1 ) ( N + 1 ) ( N+ 3 ) ( N+ 5 ) CHIA HẾT CHO 384
C, VỚI A,B,C,D LÀ CÁC SỐ TỰ NHIÊN KHÁC 0 , P NGUYÊN TỐ VÀ AB+ CD = P THÌ A,C LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU
GIÚP MÌNH VỚI
a, gọi ƯCLN(n,2n-1) là d (d thuộc N)
Ta có: n chia hết cho d
=> 2n chia hết cho d
2n-1 chia hết cho d
=> 2n-1-2n chia hết cho d
=> 1 chia hết cho d
=> d thuộc ước của 1
=> d=1
=> n bà 2n+1 nguyên tố cùng nhau
a, gọi ƯCLN(n,2n-1) là d (d thuộc N)
Ta có: n chia hết cho d
=> 2n chia hết cho d
2n-1 chia hết cho d
=> 2n-1-2n chia hết cho d
=> 1 chia hết cho d
=> d thuộc ước của 1
=> d=1
=> n bà 2n+1 nguyên tố cùng nhau
Các bạn giải giúp mình câu này nhé:
Cho a,b thuộc N* là hai số nguyên tố cùng nhau. Chứng minh rằng a.b và a+b là hai số nguyên tố cùng nhau.
Mấy bài này khó quá,bạn nào giải được mình xin cảm ơn nha :
Bài 1 : Cho a là số tự nhiên lẻ, b là một số tự nhiên. Chứng minh rằng các số:
a) a và ab+4 là 2 số nguyên tố cùng nhau
b)Tìm n để n+2 và 3n+11 là 2 số nguyên tố cùng nhau (n là số tự nhiên)
Bài 2: Chứng minh rằng : S=1+3+5+.........+ (2n-1) (n thuộc N*) là số chính phương .
1. Nhận xét rằng a là số tự nhiên lẻ và ab + 4 là một số chẵn.
Nếu d là một ước chung của a và ab + 4 ( d > 1), thì do a lẻ nên d phải là số lẻ.
Do ab chia hết cho d nên 4 chia hết cho d, suy ra d \(\in\) { 2; 4 }. (mâu thuẫn)..
b) Gọi d là ước chung lớn nhất của n + 2 và 3n + 11.
Suy ra \(\hept{\begin{cases}n+2⋮d\\3n+11⋮d\end{cases}\Rightarrow\hept{\begin{cases}3n+6⋮d\\3n+11⋮d\end{cases}}}\).
Suy ra \(3n+11-\left(3n+6\right)=5⋮d\).
Vì vậy d = 1 hoặc d = 5.
Để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau thì d = 1.
Nếu giả sử ngược lại \(\hept{\begin{cases}n+2⋮5\\3n+11⋮5\end{cases}}\) \(\Leftrightarrow n+2⋮5\).
Suy ra \(n\) chia 5 dư 3 hay n = 5k + 3.
Vậy để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau, thì n chia cho 5 dư 0, 1, 2, 4 hay n = 5k, n = 5k +1, n = 5k + 2, n = 5k + 4.
Số các số hạng của S là: \(\frac{\left(2n-1-1\right)}{2}+1=n-1+1=n\).
S = 1 + 3 + 5 + ........ (2n - 1)
\(=\frac{\left(2n-1+1\right).n}{2}=n.n=n^2\).
Suy ra S là một số chính phương.
Cho a và b là 2 số nguyên tố cùng nhau .chứng minh rằng các số sau cũng là hai số nguyên tố cùng nhau a)a và a+b b)a2 và a+b c)ab và a+b
a) tìm số nguyên n để phân số n*2-2/n+1 đạt giá trị nguyên
b) cho a+b=p với p là số nguyên tố(a,b thuộc N) .Chứng minh rằng :a và b nguyên tố cùng nhau
Cho A= 1+2+3+4+...+n và B = 2n +1 (Với n thuộc N, n > 2 )
Chứng minh rằng A và B là 2 số nguyên tố cùng nhau.
Ghi nhớ:nếu a và b nguyên tố cùng nhau thì a và b chỉ có ước chung là 1
- gọi d là ước chung nếu có của cả a và b
==> a chia hết cho d nên 8a cũng chia hết cho d
đồng thời : b chia hết cho d nên b^2 cũng chia hết cho d ( b mũ 2 )
==> ( b^2 - 8.a ) chia hết cho d
mà : a = 1 + 2 + 3 + ... + n = n ( n + 1 ) / 2 = ( n^2 + n ) /2
và b^2 = ( 2n + 1 )^2 = 4n^2 + 4n + 1
==> : (b^2 - 8a ) = ( 4n^2 + 4n +1 ) - ( 4n^2 + 4n ) = 1
vậy : ( 8a -- b^2 ) chia hết cho d <==> 1 chia hết cho d => d = 1
kl : ước chung của a và b là 1 nên a và b nguyên tố cùng nhau
Ghi nhớ:nếu a và b nguyên tố cùng nhau thì a và b chỉ có ước chung là 1
- gọi d là ước chung nếu có của cả a và b
==> a chia hết cho d nên 8a cũng chia hết cho d
đồng thời : b chia hết cho d nên b^2 cũng chia hết cho d ( b mũ 2 )
==> ( b^2 - 8.a ) chia hết cho d
mà : a = 1 + 2 + 3 + ... + n = n ( n + 1 ) / 2 = ( n^2 + n ) /2
và b^2 = ( 2n + 1 )^2 = 4n^2 + 4n + 1
==> : (b^2 - 8a ) = ( 4n^2 + 4n +1 ) - ( 4n^2 + 4n ) = 1
vậy : ( 8a -- b^2 ) chia hết cho d <==> 1 chia hết cho d => d = 1
kl : ước chung của a và b là 1 nên a và b nguyên tố cùng nhau