cho tam giác ABC vuông tại A . Gọi I là trung điểm của AC . Trên tia đối của tia IB lấy điểm D sao cho IB = ID
a) chung minh : \(\Delta AIB=\Delta CID\)
b) chứng minh : AD = BC và AD song song với BC
c Vì sao DC \(\perp\)AC
Giúp mik với !!!!
Cho tam giác ABC có AB<AC. Gọi I là trung điểm cuả AC. Trên tia đối của tia IB lấy điểm D sao cho IB=ID.
a)Chứng minh: tam giác AIB=tam giác CID
b)Chứng minh: AD song song với BC
Cho tam giác ABC có AB<AC. Gọi I là trung điểm cuả AC. Trên tia đối của tia IB lấy điểm D sao cho IB=ID.
a)Chứng minh: tam giác AIB=tam giác CID
b)Chứng minh: AD song song với BC
Xét tam giácAIB và tam giác CID, có
AI=IC
AIB=CID
BI=ID
suy ra tam giác AIB=tam giacsCID(c-g-c)
b)Chứng minh như a,suy ra tam giac AID=tam Giác CIB
suy ra IAD=ICB mà 2 góc này ở vị trí so le trong suy ra điều phải chứng minh
Cho tam giác ABC có AB<AC. Gọi I là trung điểm cuả AC. Trên tia đối của tia IB lấy điểm D sao cho IB=ID.
a)Chứng minh: tam giác AIB=tam giác CID
b)Chứng minh: AD song song với BC
a) Xét tam giác AIB và tam giác IDC có:
Cạnh IA= cạnh IC( I là trung điểm của AC)
Cạnh IB = ID( gt)
Góc AIB = góc DIC ( hai góc đối đỉnh)
Do đó : Tam Giác,AIB=tam giác CID.
b) Ta có góc AID = góc CBD (ở vị trí so le trong)
Nên cạnh AC song song với BC
Hình Bạn Tự Vẽ Nha.
cho tam giác abc( ab < ac) . gọi i là trung điểm của ac . trên tia đối của tia ib lấy điểm d , sao cho ib = id
a, chứng minh tam giác aib= tam giác cid
b, chứng minh ad = bc và ad // bc
a) Xét ΔAIB và ΔCID có
IA=IC(I là trung điểm của AC)
\(\widehat{AIB}=\widehat{CID}\)(hai góc đối đỉnh)
IB=ID(gt)
Do đó: ΔAIB=ΔCID(c-g-c)
b) Xét ΔAID và ΔCIB có
IA=IC(I là trung điểm của AC)
\(\widehat{AID}=\widehat{CIB}\)(hai góc đồng vị)
ID=IB(gt)
Do đó: ΔAID=ΔCIB(c-g-c)
Suy ra: AD=CB(Hai cạnh tương ứng) và \(\widehat{DAI}=\widehat{BCI}\)(hai góc tương ứng)
mà \(\widehat{DAI}\) và \(\widehat{BCI}\) là hai góc ở vị trí so le trong
nên AD//BC(Dấu hiệu nhận biết hai đường thẳng song song)
Cho tam giác ABC vuông tại A có ABC=60. Gọi I là trung điểm của AC, trên tia đối của ta IB lấy điểm D sao cho ID=IB.
a) Tính số đo góc ACB
b) Chứng minh : tam giác AIB= tâm giác CID từ đó suy ra CD vuông góc AC và CD//AB
c) CM : tam giác IBC = tam giác IDA từ đó suy ra AD//BC
d) Đường thẳng qua C song song với DB cắt tia AB tại K
Chứng Minh : tam giác ABD = tam giác BKC
các bạn tự vẽ hình nha
a) góc acb là : b+c=90 (hai góc phụ nhau)
c=90-60
c=30
b) xét tam giác aib và tam giác cid ta có
tiếp theo là có AI =IC (GT) GÓC AIB=GÓC DIC (HAI GÓC ĐỐI ĐỈNH) BI=DI DO ĐÓ TAM GIÁC AIB =TAM GIÁC CID (C-G-C) C) XÉT TAM GIÁC IDA VÀ TAM GIÁC IBC TA CÓ
IB=ID(GT) GÓC AIC=GÓC CIB(HAI GÓC ĐỐI ĐỈNH) AI=IC(GT) DO ĐÓ HAI TAM GIÁC BẰNG NHAU THEO TRƯỜNG HỢP C-G-C
Cho tam giác ABC ( AB< AC ). Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh : a) Δ AIB = Δ CID. b) AD = BC và AD // BC. c) Gọi E là trung điểm của AB. Trên tia đối của tia EC lấy điểm K sao cho: EC = EK. Chứng minh: D, A, K thẳng hàng.
a) Xét Δ AIB và Δ CID:
+ IB = ID (gt).
+ IA = IC (I là trung điểm của AC).
+ ^AIB = ^CID (2 góc đối đỉnh).
=> Δ AIB = Δ CID (c - g - c).
b) Xét tứ giác ABCD có:
+ I là trung điểm của AC (gt).
+ I là trung điểm của BC (IB = ID).
=> Tứ giác ABCD là hình bình hành (dhnb).
=> AD = BC và AD // BC (Tính chất hình bình hành).
c) Xét tứ giác KABC có:
+ E là trung điểm của AB (gt).
+ E là trung điểm của KC (EC = EK).
=> Tứ giác KABC là hình bình hành (dhnb).
=> KA // BC (Tính chất hình bình hành).
Mà AD // BC (cmt).
=> 3 điểm D, A, K thẳng hàng (đpcm).
Cho tam giác ABC. Gọi I là trung điểm của AC. Trên tia đối của tia IB, lấy điểm D sao cho IB = ID.
a) Chứng minh rằng tam giác AIB = tam giác CID
b) Chứng minh rằng AD = BC và AD // BC
c) Tìm điều kiện của tam giác ABC để DC vuông góc với AC
Cho tam giác ABC. Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D sao cho IB=ID.
a) Chứng minh: △AIB = △CID
b) Chứng minh: AD = BC và AD // BC
c) Gọi E là trung điểm đoạn thẳng BC và F là trung điểm đoạn thẳng AD. Chứng minh IE = IF
d) Chứng minh: △EAD = △FCB
a: Xét ΔAIB và ΔCID có
IA=IC
\(\widehat{AIB}=\widehat{CID}\)
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm của AC
I là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AD//BC và AD=BC
c: Xét tứ giác AFCE có
AF//CE
AF=CE
Do đó: AFCE là hình bình hành
Suy ra: Hai đường chéo AC và FE cắt nhau tại trung điểm của mỗi đường
hay IE=IF
Cho tam giác ABC .Gọi I là trung điểm của AC .Trên tia đối của tia IB lấy điểm D sao cho IB=ID
a)Chứng minh :tam giác AIB=tam giác CID
b)Chứng minh : AD=BC và AD//BC
c)Tìm điều kiện của tam giác ABC để DC vuông góc với AC(ai làm đúng tớ cho cái đúng)
a) Xét ΔABIΔABIvà ΔCIDΔCID ta có:
BI = DI (gt)
ˆAIBAIB^ = ˆCIDCID^ ( 2 góc đối đỉnh)
AI = CI (vì I là trung điểm của AC)
⇒ΔAIB=ΔCID⇒ΔAIB=ΔCID
b) Vì ΔAIB=ΔCIDΔAIB=ΔCID (c/m câu a)
⇒ˆICD=ˆBAI⇒ICD^=BAI^ (2 góc tương ứng)
Mà ˆBAI=90oBAI^=90o ⇒ˆICD=90o⇒ICD^=90o
⇒DC⊥AC