Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)CMR
\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)và \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\). Chứng minh các tỉ lệ thức sau:
\(\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\)và \(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\)
ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\left(1\right)\)
mà \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)
Từ (1) \(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\)
ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)
Lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\Rightarrow\frac{\left(a+b^2\right)}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\)
cho tỉ lệ thức sau \(\frac{a}{b}=\frac{c}{d}\):
CMR:
a\(\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\)
b\(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\)
a) ta có: \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\frac{a}{b}=k\Rightarrow a=bk\)
\(\frac{c}{d}=k\Rightarrow c=dk\)
thay vào \(\frac{a^2-b^2}{ab}=\frac{\left(bk^2\right)-b^2}{bkb}=\frac{bkbk-bb}{bkb}=\frac{bb\times\left(kk-1\right)}{bbk}=\frac{kk-1}{k}\)
\(\frac{c^2-d^2}{cd}=\frac{\left(dk^2\right)-d^2}{dkd}=\frac{dkdk-dd}{dkd}=\frac{dd\times\left(kk-1\right)}{ddk}=\frac{kk-1}{k}\)
\(\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\left(=\frac{kk-1}{k}\right)\)
b) ta có \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\frac{a}{b}=k\Rightarrow a=bk\)
\(\Rightarrow\frac{c}{d}=k\Rightarrow c=dk\)
thay vào \(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(bk+b\right)^2}{bkbk+bb}=\frac{b\left(k+1\right)\times b\left(k+1\right)}{bb\left(kk+1\right)}=\frac{bb\left(k+1\right)\left(k+1\right)}{bb\left(kk+1\right)}=\frac{\left(k+1\right)\left(k+1\right)}{kk+1}\)
\(\frac{\left(c+d\right)^2}{c^2+d^2}=\frac{\left(dk+d\right)^2}{dkdk+dd}=\frac{\left(d\left(k+1\right)\right)^2}{dd\left(kk+1\right)}=\frac{d\left(k+1\right)\times d\left(k+1\right)}{dd\left(kk+1\right)}=\frac{dd\left(k+1\right)\left(k+1\right)}{dd\left(kk+1\right)}=\frac{\left(k+1\right)\left(k+1\right)}{kk+1}\)
\(\Rightarrow\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\left(=\frac{\left(k+1\right)\left(k+1\right)}{kk+1}\right)\)
(a² + b²) / (c² + d²) = ab/cd
<=> (a² + b²)cd = ab(c² + d²)
<=> a²cd + b²cd = abc² + abd²
<=> a²cd - abc² - abd² + b²cd = 0
<=> ac(ad - bc) - bd(ad - bc) = 0
<=> (ac - bd)(ad - bc) = 0
<=> ac - bd = 0 hoặc ad - bc = 0
<=> ac = bd hoặc ad = bc
<=> a/b = d/c hoặc a/b = c/d (đpcm)
Câu a:
\(\frac{a^2-b^2}{ab}=\frac{a^2}{ab}-\frac{b^2}{ab}=\frac{a}{b}-\frac{b}{a}=\frac{c}{d}-\frac{d}{c}=\frac{c^2-d^2}{cd}\)(Đpcm)
Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)ta suy ra được tỉ lệ thức \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}và\left(\frac{a+b}{c+d}\right)^2=\frac{ab}{cd}\)
Giả sử tất cả các tỷ lệ thức đều có nghĩa.
Từ: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
Và suy ra: \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)
Và Từ: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)
CHo tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
Cmr \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\) và \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
* Chứng minh : \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
Ta có :
\(\frac{a}{b}=\frac{c}{d}\)\(\Leftrightarrow\)\(\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2\)\(\Leftrightarrow\)\(\frac{a^2}{b^2}=\frac{c^2}{d^2}\)\(\Leftrightarrow\)\(\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\) \(\left(1\right)\)
Lại có :
\(\frac{a^2}{c^2}=\frac{a.a}{c.c}=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\) \(\left(2\right)\)
Từ (1) và (2) suy ra :
\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\) ( đpcm )
Vậy ...
* Chứng minh : \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
Ta có :
\(\frac{a}{b}=\frac{c}{d}\)\(\Leftrightarrow\)\(\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
Do đó :
\(\frac{a}{c}=\frac{a+b}{c+d}\)\(\Rightarrow\)\(\frac{a^2}{c^2}=\left(\frac{a+b}{c+d}\right)^2\) \(\left(1\right)\)
Lại có :
\(\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\)\(\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\) \(\left(2\right)\)
Từ (1) và (2) suy ra :
\(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\) ( đpcm )
Vậy...
Chúc bạn học tốt ~
cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\).Chứng minh rằng ta có các tỉ lệ thức sau( giả thiết các tỉ lệ thức đều có nghĩa)
a,\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
b,\(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
a)\(\frac{ab}{cd}=\frac{bk.b}{dk.b}=\frac{b^2}{d^2}\left(1\right)\)
\(\frac{a^2-b^2}{c^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(2\right)\)
từ\(\left(1\right)\)và\(\left(2\right)\)\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
Cho a/b=c/d CMR Các tỉ lệ thứcsau ( giả thiết các tỉ lệ thức đều có nghĩa )
a, \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
b, \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)
\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right)\)
b) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)
\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\left(đpcm\right)\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\).Chứng minh rằng \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)và \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
Tôi chỉ gợi ý thôi. Bạn đặt tỉ lệ thức đã cho bằng 1 số k nào đó
cho tỉ lệ đa thức \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh rằng:
a.\(\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\)
b.\(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=kd\left(3\right)\)
Ta có:\(\frac{a^2-b^2}{ab}=\frac{b^2k^2-b^2}{b^2k}=\frac{k^2-1}{k}\left(1\right)\)
\(\frac{c^2-d^2}{cd}=\frac{k^2d^2-d^2}{d^2k}=\frac{k^2-1}{k}\left(2\right)\)
Từ (1) và (2) suy ra:đpcm
b)\(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\)
Từ (3) ta được:\(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(bk+b\right)^2}{b^2k^2+b^2}=\frac{\left[b\left(k+1\right)\right]^2}{b^2\left(k^2+1\right)}=\frac{b^2\left(k+1\right)^2}{b^2\left(k^2+1\right)}=\frac{\left(k+1\right)^2}{k^2+1}\left(4\right)\)
\(\frac{\left(c+d\right)^2}{c^2+d^2}=\frac{\left(dk+d\right)^2}{d^2k^2+d^2}=\frac{\left[d\left(k+1\right)\right]^2}{d^2\left(k^2+1\right)}=\frac{d^2\left(k+1\right)^2}{d^2\left(k^2+1\right)}=\frac{\left(k+1\right)^2}{k^2+1}\left(5\right)\)
Từ (4) và (5) ta được đpcm
Giúp mik với
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\).Chứng minh:
a)\(\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
b)\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{ab}{cd}\)
c)\((\frac{a+b}{c+d})^2=\frac{a^2+b^2}{c^2+d^2}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)
a) \(\frac{a+c}{b+d}=\frac{kb+kd}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\)(1)
\(\frac{a-c}{b-d}=\frac{kb-kd}{b-d}=\frac{k\left(b-d\right)}{b-d}=k\)(2)
Từ (1) và (2) => đpcm
b) \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(kb+b\right)^2}{\left(kd+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\)(1)
\(\frac{ab}{cd}=\frac{kb\cdot b}{kd\cdot d}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\)(2)
Từ (1) và (2) => đpcm
c) \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{kb+b}{kd+d}\right)^2=\left(\frac{b\left(k+1\right)}{d\left(k+1\right)}\right)^2=\left(\frac{b}{d}\right)^2=\frac{b^2}{d^2}\)(1)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\frac{k^2b^2+b^2}{k^2d^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)(2)
Từ (1) và (2) => đpcm