Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thi Bùi
Xem chi tiết
Hoàng Như Quỳnh
11 tháng 7 2021 lúc 8:50

\(2\left(xy+yz+zx\right)-x^2-y^2-z^2\)

\(2xy+2yz+2zx-x^2-y^2-z^2\)

\(-\left(x^2+y^2+z^2-2xy-2yz-2xz\right)\)

\(-\left(x+y+z\right)^2\)

Khách vãng lai đã xóa
minh châu trần
Xem chi tiết
no name
Xem chi tiết
๖ۣۜŠóї 乂áɱッ
Xem chi tiết
Ngô Chi Lan
19 tháng 8 2020 lúc 19:49

Bài làm:

a) \(x^2-2xy+y^2-zx+yz\)

\(=\left(x-y\right)^2-z\left(x-y\right)\)

\(\left(x-y\right)\left(x-y-z\right)\)

Khách vãng lai đã xóa
Ahwi
19 tháng 8 2020 lúc 19:49

a/ \(x^2-2xy+y^2-zx+yz.\)

\(=\left(x-y\right)^2-z\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-z\right)\)

c/ \(x^2-y^2-2x-2y.\)

\(=x^2-2x+1-y^2-2y-1\)

\(=\left(x^2-2x+1\right)-\left(y^2+2y+1\right)\)

\(=\left(x-1\right)^2-\left(y+1\right)^2\)

\(=\left(x-1+y+1\right)\left(x-1-y-1\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)

Khách vãng lai đã xóa
Phan Nghĩa
19 tháng 8 2020 lúc 19:51

sử dụng hằng thành thạo = ez 

\(a,x^2-2xy+y^2-zx+yz\)

\(=\left(x-y\right)\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\)

\(b,a^3-3a+3b-b^3=\left(a^3-b^3\right)-3\left(a-b\right)\)

\(=\left(a-b\right)\left(a^2+ab+b^2\right)-3\left(a-b\right)\)

\(=\left(a-b\right)\left(a^2+ab-b^2-3\right)\)

\(c,x^2-y^2-2x-2y=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)=\left(x+y\right)\left(x-y-2\right)\)

Khách vãng lai đã xóa
Nguyễn Thị Huyền Thương
Xem chi tiết
Quyên Nguyễn
Xem chi tiết
Phân tích đa thức (x^2 + y^2 + z^2)(x + y + z)^2 + (xy + yz + zx)^2 thành nhân tử

phân tích đa thức thành nhân tử đặt biến phụ

(x2 + y2 + z2)(x + y + z)2 + (xy + yz + zx)2

  Theo dõi Vi phạm          VDO.AIToán 8 Bài 6Trắc nghiệm Toán 8 Bài 6Giải bài tập Toán 8 Bài 6Trả lời (1)   Bùi Xuân Chiến

(x+ y+ z2)(x + y + z)2 + (xy + yz +zx)2

= (x+ y+ z2)(x+ y+ z+ 2xy +2yz +2zx) + (xy + yz + zx)2

= (x+ y+ z2)(x2 + y2 + z2) + (x+ y2 + z2)(2xy + 2yz + 2zx) + (xy + yz +zx)2

= (x+ y2 + z2)2 + 2(x+ y2 + z2)(xy + yz + zx) + (xy + yz + zx)2

= (x2 + y2 + z+ xy + yz + zx)2

Đảm bảo ko phân tích tiếp đc nữa đâu ^^, đây tuy ko phải cách đặt biến phụ nhưng cách này chắc ngắn hơn cách đặt biến phụ.

  bởi Bùi Xuân Chiến 
Khách vãng lai đã xóa
lộc Nguyễn
Xem chi tiết
Minh Triều
22 tháng 7 2015 lúc 8:37

A ) xy(z+y)+yz(y+z)+zx(z+x)

=y.[x(z+y)+z(y+z)]+zx(z+x)

=y.(xz+xy+zy+z2)+zx(z+x)

=y.(xz+z2+xy+zy)+zx(z+x)

=y.[z.(z+x)+y.(z+x)]+zx(z+x)

=y.(z+x)(z+y)+zx(z+x)

=(z+x)[y(z+y)+zx]

=(z+x)(yz+y2+zx)

B )xy(x+y)-yz(y+z)-zx(z-x)

=y.[x(x+y)-z(y+z)]-zx(z-x)

=y.(x2+xy-zy-z2)-zx(z-x)

=y.(x2-z2+xy-zy)-zx(z-x)

=y.[(x+z)(x-z)+y.(x-z)]-zx(z-x)

=y.(x-z)(x+z+y)+zx(x-z)

=(x-z)[y(x+z+y)+zx]

=(x-z)(yx+yz+y2+zx)

=(x-z)(yx+zx+yz+y2)

=(x-z)[x.(y+z)+y.(y+z)]

=(x-z)(y+z)(x+y)

 

Long Trần
30 tháng 6 2021 lúc 9:52

b. \(\text{ xy(x+y)-yz(y+z)-xz(z-x) =xy(x+y+z-z)+yz(y+z)+xz(x-z) =xy(x-z)+xy(y+z)+yz(y+z)+xz(x-z) =(x+y)(y+z)(x-z) }\)

Hiếu
Xem chi tiết
alibaba nguyễn
25 tháng 7 2017 lúc 15:25

a/ \(\left(x-y\right)\left(z-x\right)\left(z-y\right)\)

b/ \(\left(1-y\right)\left(y-x\right)\)

Phạm Nguyễn Hoàng Anh
25 tháng 7 2017 lúc 15:30

a. \(\left(x-y\right)\left(z-x\right)\left(z-y\right)\)

b. \(\left(1-y\right)\left(y-x\right)\)

Quốc Bảo
17 tháng 8 2021 lúc 20:46

a. (x−y)(z−x)(z−y)(x−y)(z−x)(z−y)

b. (1−y)(y−x)

Đặng Công Nguyên
Xem chi tiết
Nguyễn Minh Đăng
25 tháng 10 2020 lúc 18:48

a) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-8\)

\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-8\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-8\)

\(=\left(x^2+5x+5\right)^2-1-8\)

\(=\left(x^2+5x+5\right)^2-3^2\)

\(=\left(x^2+5x+2\right)\left(x^2+5x+8\right)\)

b) \(xy\left(x-y\right)+yz\left(y-z\right)+zx\left(z-x\right)\)

\(=xy\left(x-y\right)+y^2z-yz^2+z^2x-zx^2\)

\(=xy\left(x-y\right)+z^2\left(x-y\right)-z\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(xy+z^2-zx-yz\right)\)

\(=\left(x-y\right)\left[x\left(y-z\right)-z\left(y-z\right)\right]\)

\(=\left(x-y\right)\left(x-z\right)\left(y-z\right)\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
25 tháng 10 2020 lúc 19:04

a) ( x + 1 )( x + 2 )( x + 3 )( x + 4 ) - 8

= [ ( x + 1 )( x + 4 ) ][ ( x + 2 )( x + 3 ) ] - 8

= ( x2 + 5x + 4 )( x2 + 5x + 6 ) - 8

Đặt t = x2 + 5x + 5

bthuc ⇔ ( t - 1 )( t + 1 ) - 8

           = t2 - 1 - 8

           = t2 - 9

           = ( t - 3 )( t + 3 )

           = ( x2 + 5x + 5 - 3 )( x2 + 5x + 5 + 3 )

           = ( x2 + 5x + 2 )( x2 + 5x + 8 )

b) xy( x - y ) + yz( y - z ) + zx( z - x )

= x2y - xy2 + y2z - yz2 + zx( z - x )

= ( y2z - xy2 ) - ( yz2 - x2y ) + zx( z - x )

= y2( z - x ) - y( z2 - x2 ) + zx( z - x )

= ( z - x )( y2 + zx ) - y( z - x )( z + x )

= ( z - x )( y2 + zx - yz - yx )

= ( z - x )[ ( y2 - yx ) - ( yz - zx ) ]

= ( z - x )[ y( y - x ) - z( y - x ) ]

= ( z - x )( y - x )( y - z )

Khách vãng lai đã xóa