Cho A = 1-3/4 mũ 2 - 3/4 mũ 3 + 3/4 mũ 4 -...-3/4 mũ 2009 + 3/4 mũ 2010
Chứng tỏ A ko là số nguyên
cho a = 1 +4 + 4 mũ 2 + 4 mũ 3 + 4 mũ 4 + 4 mũ 5 + 4 mũ 6 và b = 4 mũ 7 tính b -3a
cho a = 2 mũ 0 + 2 mũ 1 + 2 mũ 2 + ... +2 mũ 2008 và b = 2 mũ 2009 tính b - a
cho a = 1 +3 + 3 mũ 3 + ... +3 mũ 2006 và b = 2007 tính b - 2a
Ta có công thức tổng quát như sau:
\(A=n^k+n^{k+1}+n^{k+2}+...+n^{k+x}\Rightarrow A=\dfrac{n^{k+x+1}-n^k}{n-1}\)
Áp dụng ta có:
\(A=1+4+4^2+...+4^6=\dfrac{4^7-1}{3}\)
\(\Rightarrow B-3A=4^7-3\cdot\dfrac{4^7-1}{3}=1\)
______
\(A=2^0+2^1+...+2^{2008}=2^{2009}-1\)
\(\Rightarrow B-A=2^{2009}-2^{2009}+1=1\)
_____
\(A=1+3+3^2+....+3^{2006}=\dfrac{3^{2007}-1}{2}\)
\(\Rightarrow B-2A=3^{2007}-2\cdot\dfrac{3^{2007}-1}{2}=1\)
Chứng tỏ:
a)S=4+4 mũ 2+4 mũ 3+4 mũ 4+...+4 mũ 99+4 mũ 100 chia hết cho 5
b)S=2+2 mũ 2+2 mũ 3+2 mũ 4+...+2 mũ 2009+2 mũ 2010 chia hết cho 6
c)S=1+7+7 mũ 2+7 mũ 3+...+7 mũ 101 chia hết cho 8
d)S=4 mũ 39+4 mũ 40+4 mũ 41 chia hết cho 28
AI XONG TRC MÌNH TICK NHA~
S=1+7+7^2+7^3+...+7^100+7^101
=(1+7)+7^2(1+7)+...+7^100(1+7)
=8+7^2.8+...+7^100.8
=8.(1+7^2+...+7^100) chia hết cho 8
Vậy S chia hết cho 8
a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5
S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)
S=20+4^2*20+...+4^98
S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)
b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6
S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)
S=6+2^2.*6+...+2^2008
S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6
a)Cm A=10mũ99 cộng 104 chia hết cho hai và ba
b)Cm B=10 mũ 100 cộng 17 chia hết cho 9
c)Cm 10 mũ 11 cộng với 8 chia hết cho 18 với n thuộc z và n bé hơn hoặc bằng 2
mong mọi người trả lời giúp mik cảm ơn các bạn
1. Tìm x biết:
a) 716- (x-143) = 659
b) [(8x -12) : 4] . 3 mũ 3 = 3 mũ 6
c) -2 < |x| < và = 1, với x thuộc Z
d) 10 + 2x = 4 mũ 5 : 4 mũ 3
e) 4 mũ x + 1 + 4 mũ 0 = 65
g) 96 - 2 . (x + 1) = -42
h) 4x - 20 = 2 mũ 5 : 2 mũ 2
k) 8x - 75 = 5x + 21
i) [(8x - 14) : 2 - 2] . 31 =341
2. Cho A = 2 mũ 0 + 2 mũ 1 + 2 mũ 2 + 2 mũ 3 + ...... + 2 mũ 2009 + 2 mũ 2010. Tìm số dư khi chia A cho 3.
3. Cho B = 3 + 3 mũ 2 + 3 mũ 3 + 3 mũ 4 + ...... + 3 mũ 20. Chứng tỏ rằng B là bội của 12
Mình cần gấp nên các bạn trả lời nhanh hộ mình nha! 0_0
\(a.x-143=57\)
\(x=200\)
\(b.\left(8x-12\right):4=3^3\)
\(8x-12=27.4\)
\(8x-12=108\)
\(8x=120\)
\(x=15\)
\(d.10+2x=4^2\)
\(2x=16-10\)
\(2x=6\)
\(x=3\)
a) 716-(x-143)=659
<=>x-143=57
<=>x=57+143
<=>x=200
b) [(8x-12):4].33=36
<=>(8x-12):4=33
<=>8x-12=27.4
<=>8x-12=108
<=>8x=120
<=>x=5
c) -2<|x|≤1, x thuộc Z
Vì -2<|x|≤1
=>|x| thuộc {-1;0;1}
+)Với |x|=-1=>Vô lí
+)Với |x|=0=>x=0(tm)
+)Với |x|=1=>x=-1;1(tm)
Vậy x thuộc {-1;1;0}
d) 10+2x=45:43
<=>10+2x=16
<=>2x=6
<=>x=3
e) 4x+1+40=65
<=>4x+1+1=65
<=>4x+1=64
<=>4x+1=43
<=>x+1=3
<=>x=2
g) 96-2(x+1)=-42
<=>2(x+1)=96+42
<=>2(x+1)=138
<=>x+1=69
<=>x=68
h) 4x-20=25:22
<=>4x-20=23
<=>4x=8+20
<=>4x=28
<=>x=7
k) 8x-75=5x+21
<=>8x-5x=75+21
<=>3x=96
<=>x=32
i) [(8x-14):2-2].31=341
<=>(8x-14):2-2=11
<=>(8x-14):2=13
<=>8x-14=26
<=>8x=40
<=>x=5
Chứng tỏ rằng rằng:(3 mũ 1 + 3 mũ 2 + 3 mũ 3 + 3 mũ 4 + .... + 3 mũ 2009 + 3 mũ 2010) chia hết cho 13
(31 + 32 +33 ) + (34 + 35 +36 ) + ... + (32008 + 32009 + 32010 )
= 3 ( 1+ 3 + 9 ) + 34 ( 1+ 3 +9 ) + ... + 32008 ( 1 + 3 +9 )
= 13 ( 3 + 34 + ... + 32008 ) chia hết cho 13
bai 9
a= 2+ 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +..... +2 mũ 100
b= 1+ 3 + 3 mũ 2 + 3 mu 2 + ... + 3 mũ 2009
c=1+ 5 + 5 mũ 2 + 5 mũ 3 +...+ 5 mũ 1998
d= 4 + 4 mũ 2 + 4 mũ 3 +... +4 mũ n
a=2mu 101 - 2
b= 3 mu 2010 - 1
c=5mu 1999-1
d=4 mu n . 4 -4
a=2+22+...+2100
2a=22+23+24+...+2101
a=2a-a=a
=> a= 22+23+24+..+2101 -(2+2^2+...+2^100)
=>a= 2^101 -2
1. Cho A = 3 + 3 mũ 2 + 3 mũ 3 + ... + 3 mũ 100
Tìm số tự nhiên n biết 2A + 3 = 3 mũ n
2. Chứng minh rằng A là một lũy thừa của 2 với:
A = 4+ 2 mũ 2 + 2 mũ 3 + .... + 2 mũ 20
3. Thu gọn các tổng sau:
a) A = 1 + 3 + 3 mũ 2 + 3 mũ 3 + ... + 3 mũ 100
b) B = 1 + 4 + 4 mũ 2 + 4 mũ 3 + 4 mũ 4 + ... + 4 mũ 100
c) C = 1 + 5 mũ 2 + 5 mũ 3 + 5 mũ 6 + .... + 5 mũ 200
d) D = 3 mũ 100 + 3 mũ 101 + 3 mũ 102 + .... + 3 mũ 150
Ai tk mk mk tk lại ai nhanh nhất nhé
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
cho A=4 mũ 0+4 mũ 1+4 mũ 2+4 mũ 3+........+4 mũ 97.Chứng tỏ rằng A chia hết cho 85
1. Cho A = 3 + 3 mũ 2 + 3 mũ 3 + ... + 3 mũ 100
Tìm số tự nhiên n biết 2A + 3 = 3 mũ n
2. Chứng minh rằng A là một lũy thừa của 2 với:
A = 4+ 2 mũ 2 + 2 mũ 3 + .... + 2 mũ 20
3. Thu gọn các tổng sau:
a) A = 1 + 3 + 3 mũ 2 + 3 mũ 3 + ... + 3 mũ 100
b) B = 1 + 4 + 4 mũ 2 + 4 mũ 3 + 4 mũ 4 + ... + 4 mũ 100
c) C = 1 + 5 mũ 2 + 5 mũ 3 + 5 mũ 6 + .... + 5 mũ 200
d) D = 3 mũ 100 + 3 mũ 101 + 3 mũ 102 + .... + 3 mũ 150
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) Bạn hãy xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
bài 1
2 mũ 3 x 2 mũ 7 x 2 mũ 4 =
2 mũ 3 x 2 mũ 4 : 2 mũ 5 =
1300 - { 150.2 + [(180.5 ) + 90 ] : 9 } =
215:{185-[2.(56+34)]} =
(-3) + (-125) +(-25 ) =
25+(-38) =
(126) + 159 =
(120)+(-135 ) + 200 =
bài 2 tìm x
a, X:15 = 70
b, 2 mũ 8 : x = 2 mũ 3
c, 135 + ( 319 + x ) = 765 + 281 + 3
d, ( 132 - x ) +13 = 96
e, (x+136 ) -348 = 90
f, x:3 mũ 9 = 3 mũ 3
g, 2 mũ X = 4
h, 5 mũ X-3 = 125
i, 2 mũ X+1 = 16
Bài 3
Chứng tỏ rằng
A=2 mũ 2+ 2 mũ 3 + 2 mũ 4 +...+2 mũ 9 + 2 mũ 10 chia hết cho 3
A+ 2 mũ 2+ 2 mũ 4 + 2 mũ 6 + 2 mũ 8 +...+2 mũ 18 +2 mũ 20 chia hết cho 5
A= 7+ 7 mũ 2 + 7 mũ 3 + 7 mũ 4+...+7 mũ 9 + 7 mũ 10 chia hết cho 8
A= 4 + 4 mũ 2 + 4 mũ 3 + 4 mũ 4 +...+4 mũ 9 + 4 mũ 10 chia hết cho 5