Tìm GTLN của biểu thức \(K=-x^2+6xy-10y^2-2x+10y+2010\)
Tính giá trị lớn nhất của biểu thức \(K=-x^2+6xy-10y^2-2x+10y+2010\)
Ta có :
\(K=\left(-x^2-9y^2-1+6xy+6y-2x\right)+\left(-y^2+4y-4\right)+2015\)
\(=-\left[x^2+\left(3y\right)^2+1^2+2.x.3y+2.x.\left(-1\right)+2.3y.1\right]-\left(y^2-4y+4\right)+2015\)
\(=-\left(x-3y+1\right)^2-\left(y-2\right)^2+2015\)
Ta thấy \(-\left(x-3y+1\right)^2\le0\forall x;y\text{ }\text{and}\text{ }-\left(y-2\right)^2\le0\forall y\)
\(\Rightarrow-\left(x-3y+1\right)^2-\left(y-2\right)^2\le0\forall x;y\)
\(\Rightarrow K=-\left(x-3y+1\right)^2-\left(y-2\right)^2+2015\le2015\forall x;y\)
K đạt GTLN là 2015 khi \(\hept{\begin{cases}x-3y+1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\y=2\end{cases}}\)
tìm GTNN của: 2x^2+9y^2-6xy-6x-12y+2010
Tìm GTLN: -x^2+2xy-4y^2+2x-10y-8
Tìm GTLN: |x-4|(2-|x-4|)-95
CÁC BẠN GIẢI ĐÀY ĐỦ GIÚP MÌNH NHÉ
1) Tìm GTNN của B = 2x^2 + 9y^2 - 6xy - 6x -12y + 2010
2) Tìm GTLN của
a) D = -x^2 + 2xy - 4y^2 + 2x - 10y - 8
b) E = |x - 4| x (2 - |x - 4|) - 95
1) Tìm GTNN của B = 2x^2 + 9y^2 - 6xy - 6x -12y + 2010
2) Tìm GTLN của
a) D = -x^2 + 2xy - 4y^2 + 2x - 10y - 8
b) E = |x - 4| x (2 - |x - 4|) - 95
Mọi người làm ơn giúp mình khẩn cấp câu này. Cám ơn mọi người nhiều!!!
Tìm giá trị nhỏ nhất của biểu thức:
\(A=x^2+10y^2+2x-6xy-10y+25\)
\(A=x^2+10y^2+2x-6xy-10y+25\)
=> \(A=x^2+2x\left(1-3y\right)+\left(1-3y\right)^2-\left(1-3y\right)^2-10y+25\)
=> \(A=\left(x+1-3y\right)^2-1+6y-9y^2-10y+25\)
=> \(A=\left(x+1-3y\right)^2-9y^2-4y+24\)
=> \(A=\left(x+1-3y\right)^2-\left(3y\right)^2-2.3y.\frac{2}{3}-\left(\frac{2}{3}\right)^2+\frac{220}{9}\)
=> \(A=\left(x+1-3y\right)^2-\left(3y+\frac{2}{3}\right)^2+\frac{220}{9}\)
Có \(\left(x+1-3y\right)^2\ge0\)với mọi x, y
\(\left(3y+\frac{2}{3}\right)^2\ge0\)với mọi y
=> \(A=\left(x+1-3y\right)^2-\left(3y+\frac{2}{3}\right)^2+\frac{220}{9}\ge\frac{220}{9}\)với mọi x, y
Dấu "=" xảy ra <=> \(\left(x+1-3y\right)^2=0\)<=> \(x+1-3y=0\)
và \(\left(3y+\frac{2}{3}\right)^2=0\)=> \(3y+\frac{2}{3}=0\)
=> \(\hept{\begin{cases}x=\frac{-5}{3}\\y=\frac{-2}{9}\end{cases}}\)
Bổ xung phần kết luận
KL: Amin = \(\frac{220}{9}\)<=> \(\hept{\begin{cases}x=\frac{-5}{3}\\y=\frac{-2}{9}\end{cases}}\)
Bài giải trên nhầm một chỗ
Xét biểu thức sau a - b với b >= 2. Như vậy ta có a - b <= a - 2
Vì vậy nên suy luận có \(\left(x+1-3y\right)^2\ge0\)
và \(\left(3y+\frac{2}{3}\right)^2\ge0\)
sau đó suy ra \(A\ge\frac{220}{9}\)
LÀ SAI
Bạn xem lại bài của mình xem nhé
a)phân tích đa thức thành nhân tử:
\(x^4+2005x^2+2004x+2005\)
b)GTLN của:
\(-x^2-10y^2+6xy-2x+10y+9\)
a, ta có : \(x^4+2005x^2+2004x+2005\)
=\(x^4-x+2005x^2+2005x+2005\)
=\(x\left(x-1\right)\left(x^2+x+1\right)+2005\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^2-x+2005\right)\)
b, ta có \(-x^2-10y^2+6xy-2x+10y+9\)
=\(-\left(x^2+1+2x-6xy+9y^2-6y\right)-y^2+4y-4+13\)=\(13-\left(x-3y+1\right)^2-\left(y-2\right)^2\le13\forall x\)
Vậy Max=13 \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5\\y=2\end{matrix}\right.\)
tìm GTLN của biểu thức
-x^2+2xy-4y^2+2x+10y-3
nhanh mk cần gấp
Tìm GTLN của biểu thức :
a) A = 5 - 8x - 2x^2
b) B = -x^2 + 2xy - 4y^2 + 2x + 10y - 9
a)\(A=5-8x-2x^2\)
\(=-2\left(x^2+4x-\frac{5}{2}\right)\)
\(=-2\left(x^2+4x+4-\frac{13}{2}\right)\)
\(=-2\left[\left(x+2\right)^2-\frac{13}{2}\right]\)
\(=-2\left[\left(x+2\right)^2\right]+13\le13\)
Vậy \(A_{max}=13\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
tìm giá trị lớn nhất của biểu thức sau
B= -x2 - 4x2 + 2x - 4y + 3
C = - x^2 + 4y^2 + 6xy + 10y - 26