Tìm số tự nhiên n sao cho\(\frac{3n+5}{n+1}\)
có gía trị là số tự nhiên
- Tìm số tự nhiên để:
A=\(\frac{n^4+3n^3+-22n^2+6n}{n^2+2}\)Có gía trị là 1 số nguyên
ta có:
n4+3n3-22n2+6n : n2+2 = n2+3n-24 dư 48
=> n4+3n3-22n2+6n = (n2+3n-24) + \(\frac{48}{n^2+2}\)
=> n2+2 thuộc Ư(48) = {-1;-2;-3;-4;-6;-8;-12;-16;-24;-48;1;2;3;4;6;8;12;16;24;48} (n2+2 luôn dương)
=> n2 = {2-2; 3-2; 4-2;.........} = {0; 1; 2; 3; 4; 6;......... }
mà A có giá trị nguyên nên n2 = {0; 1; 4}
=> n = {0; ±1; ±2}
Tìm số tự nhiên n để B=\(\frac{3n+1}{n+1}\)có giá trị là số tự nhiên
Ta có : vì \(n\inℕ\)=> \(n+1\inℕ\)
Để \(\frac{3n+1}{n+1}\inℕ\)
=> \(3n+1⋮n+1\)
=> \(3n+3-2⋮n+1\)
=> \(3.\left(n+1\right)-2⋮n+1\)
Ta có : Vì \(3.\left(n+1\right)⋮n+1\)
=> \(-2⋮n+1\)
=> \(n+1\inƯ\left(-2\right)\)
=> \(n+1\in\left\{1;2\right\}\)
Lập bảng xét các trường hợp
\(n+1\) | \(1\) | \(2\) |
\(n\) | \(0\) | \(1\) |
Vậy \(\frac{3n+1}{n+1}\inℕ\Leftrightarrow n\in\left\{0;1\right\}\)
Cho \(B=\frac{2n+2}{n+5}+\frac{10n+34}{2n+10}-\frac{3n}{n+5}\).Tìm số tự nhiên n để B nhận giá trị là số tự nhiên
tìm n thuộc N để các phân số sau có giá trị là số tự nhiên: /(/frac{3n+5}{n+1}/)
a) n+2
b)7-1
/(/frac{3n+5}{n+1}/)
ghi cho ro rang 1 chut ko hiu de
Tìm số tự nhiên n có giá trị là số tự nhiên
3n+5 phần n+1
để phân số sau có giá trị là số tự nhiên thì:
3n + 5 chi hết cho n + 1
<=> 3.(n + 1) + 2 chia hết cho n + 1
ta thấy: 3.(n + 1) chia hết cho n + 1
=> 2 phải chi hết cho n + 1
n + 1 thuộc Ư(2) = { 1; 2}
n thuộc { 0; 1}
Cho A=\(\frac{2n+5}{3n+1}\)
Tìm số tự nhiên n để giá trị của A là số tự nhiên.
Tìm các số tự nhiên n sao cho phân số n + 3 n có giá trị là số nguyên
A. { 1; 3}
B. { -1; -3}
C. { -3; 3}
D. { -3; -1; 1; 3}
tìm các số tự nhiên n sao cho phân số \(\dfrac{n+3}{3n}\)có giá trị là số nguyên
Tìm số tự nhiên n sao cho A= (n+5)/(3n-4) là số tự nhiên