Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thủy Phạm Thanh
Xem chi tiết
Bùi Thế Hào
29 tháng 11 2017 lúc 11:38

\(\hept{\begin{cases}x+y+z=13\left(1\right)\\x^2+y^2+z^2=91\\y^2=xz\left(3\right)\end{cases}}\left(2\right)\)

Ta có: (x+y+z)2=x2+y2+z2+2xy+2yz+2zx=132

=> x2+y2+z2=169-2(xy+yz+zx)

Thay vào PT (2) ta được: 169-2(xy+yz+zx)=91

=> xy+yz+zx=39

<=> xy+yz+y2=39 (Do xz=y2)

=> y(x+y+z)=39 <=> y.13=39 => y=3

Thay y=3 vào PT (1) và (3), ta được:

\(\hept{\begin{cases}x+z=10&xz=9&\end{cases}}\)

=> x(10-x)=9 <=> x2-10x+9=0  <=> (x2-10x+25)-16=0 <=> (x-5)2-42=0 <=> (x-9)(x-1)=0

=> x1=9 => z1=1

Và: x2=1 => z2=9

Các cặp nghiệm (x,y,z) là: (9,3,1) và (1,3,9)

Li Ying
Xem chi tiết
cao van duc
24 tháng 1 2019 lúc 17:27

\(\hept{\begin{cases}\left(\frac{x}{\sqrt{2}}-\frac{y}{\sqrt{2}}-\frac{z}{\sqrt{2}}\right)^2+\frac{x^2+y^2+z^2}{3}=0\\x^2+y^2+z^2=3\end{cases}}\)

=>\(\left(\frac{x}{\sqrt{2}}-\frac{y}{\sqrt{2}}-\frac{z}{\sqrt{2}}\right)^2=-\frac{3}{2}\) vo lý

=> hệ vô nghiệm

shitbo
24 tháng 1 2019 lúc 17:29

???? Cao Văn  Đức !!!!

Bài làm chả có căn cứ J cả?

kudo shinichi
24 tháng 1 2019 lúc 17:42

\(x^2+y^2+z^2=xy+yz+zx\)

\(2\left(x^2+y^2+z^2\right)=2.\left(xy+yz+zx\right)\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Ta có: \(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x;y\\\left(y-z\right)^2\ge0\forall z;y\\\left(z-x\right)^2\ge0\forall z;x\end{cases}}\)\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x;y;z\)

Mà \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\Leftrightarrow x=y=z\Leftrightarrow x^2=y^2=z^2\)

Ta có: \(x^2+y^2+z^2=3\)

\(\Leftrightarrow3x^2=3\)

\(\Leftrightarrow x^2=1\)

\(\Leftrightarrow x^2=y^2=z^2=1\)

\(\Leftrightarrow\orbr{\begin{cases}x=y=z=1\\x=y=z=-1\end{cases}}\)

Vậy \(\orbr{\begin{cases}x=y=z=1\\x=y=z=-1\end{cases}}\)

Trang-g Seola-a
Xem chi tiết
Minh Hà Tuấn
Xem chi tiết
Ryan
Xem chi tiết
My Phan
Xem chi tiết
Blue Moon
Xem chi tiết
alibaba nguyễn
15 tháng 11 2018 lúc 8:41

a/ Đảo ngược lại rồi đặc \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)

alibaba nguyễn
15 tháng 11 2018 lúc 8:44

b/ Dễ thấy vai trò x, y, z như nhau nên ta chỉ cần xét 1 trường hợp tiêu biểu thôi.

Xét \(x>y>z\)

\(\Rightarrow\frac{1}{x}< \frac{1}{y}< \frac{1}{z}\)

\(\Rightarrow x+\frac{1}{y}>z+\frac{1}{x}\)(trái giả thuyết)

\(\Rightarrow x=y=z\)'

\(\Rightarrow x+\frac{1}{x}=2\)

\(\Leftrightarrow x=1\)

Thanh Tâm
Xem chi tiết
Nhân Trần Tiến
Xem chi tiết
Trần Thị Xuân
1 tháng 11 2017 lúc 8:56

ta nhân vế đầu cho 2 ta được:

\(2x^2+2y^2+2z^2=2xy+2yz+2zx\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

mà \(\left(x-y\right)^2>=0;\left(y-z\right)^2>=0;\left(z-x\right)^2>=0\)

dấu "=" xảy ra khi và chỉ khi \(x=y=z\)

thế vào 2 ta có \(x^{2001}+x^{2001}+x^{2001}=3^{2002}\Leftrightarrow x^{2002}=3^{2002}\Leftrightarrow x=3\)