CMR tích của 4 số tự nhiên liên tiếp chia hết cho 24
Giúp mk nhé các bn
a/CMR tích của 2 số tự nhiên liên tiếp chia hết cho 2
b/CMR tích của 3 số tự nhiên liên tiếp chia hết cho 6
c/CMR tích của 4 số tự nhiên liên tiếp chia hết cho 24
d/CMR tích của 5 số tự nhiên liên tiếp chia hết cho 120
đâu phải tích của 2 số đều chia hết cho 2 đâu
sao tích 2 số tự nhiên lại chia hết cho 2 . VD 3*5 =15 đâu chia hết cho 2. đúng ra phải là 2 số tự nhiên liên tiếp chứ!!!
a) CMR tích của 4 số tự nhiên liên tiếp thì chia hết cho 12
b) CMR tích của 5 số tự nhiên liên tiếp thì chia hết cho 60
c) CMR tích của 4 số tự nhiên liên tiếp thì chia hết cho 24
CMR:
a, Tích của hai số tự nhiên liên tiếp chia hết cho 2
b, Tích của 3 số tự nhiên liên tiếp chia hết cho 6
c, Tích của 4 số tự nhiên liên tiếp chia hết cho 24
d, Tích của 5 số tự nhiên liên tiếp chia hết cho 120
CÁC BẠN LÀM ĐƯỢC PHẦN NÀO THÌ LÀM . MONG CÓ NHIỀU BẠN GIÚP MÌNH.
Gọi 2 số tự nguyên liên tiếp là: a và a+1
Tích của chúng là: A = a(a+1)
Nếu: a = 2k thì A chia hết cho 2 Nếu: a = 2k+1 thì: a+1 = 2k+2 chia hết cho 2 => A chia hết cho 2=> đpcm
CMR:
a) Tích của 4 số tự nhiên liên tiếp chia hết cho 24
b)Tích của 4 số tự nhiên liên tiếp chia hết cho 384
c)Tích của 5 số tự nhiên liên tiếp chia hết cho 120
CMR
a, Tích của hai số tự nhiên liên tiếp chia hết cho 2
b,Tích của 3 số tự nhiên liên tiêp chia hết cho 6
c,Tích của 4 số tự nhiên liên tiếp chia hết cho 24
d, Tích của 5 số tự nhiên liên tiếp chia hết cho 120
a) giả sử: A = n(n+1) , có 2 trường hợp:
nếu n chẵn thì n chia hết cho 2 do đó A chia hết chia 2
nếu n lẻ thì n+1 chẵn do đó n+1 chia hết cho 2 nên A chia hết cho 2
Đặt tích 3 số tự nhiên liên tiếp là T = a * (a + 1) * (a + 2)
-Chứng minh T chia hết cho 2: Chỉ có 2 trường hợp
+Nếu a chia hết cho 2 (a chẵn) => T chia hết cho 2
+Nếu a chia 2 dư 1 (a lẻ) => a + 1 chia hết cho 2 => T chia hết cho 2
-Chứng minh T chia hết cho 3: Có 3 trường hợp
+Nếu a chia hết cho 3 => T chia hết cho 3
+Nếu a chia 3 dư 1 => a + 2 chia hết cho 3 => T chia hết cho 3
+Nếu a chia 3 dư 2 => a + 1 chia hết cho 3 => T chia hết cho 3
2 và 3 nguyên tố cùng nhau
=> T chia hết cho 2.3 = 6
#)Giải :
a) Vì trong hai số tự nhiên liên tiếp luôn có 1 số chia hết cho 2 => Tích đó chia hết cho 2
b) Gọi ba số tự nhiên liên tiếp là a, a+1, a+2 ( a thuộc N )
Tích của chúng là : B = a x (a+1) x (a+2)
Vì trong 3 số tự nhiên liên tiếp luôn có một số chia hết cho 2
Ta chứng minh tích B chia hết cho 2 : Gồm 2 trường hợp :
+) Trường hợp 1 : a chia hết cho 2 ( a là số chẵn ) => B chia hết cho 2
+) Trường hợp 2 : a chia 2 dư 1 ( a là số lẻ ) => a + 1 chia hết cho 2 => B chia hết cho 2
Vậy tích B chia hết cho 2 (1)
Tiếp tục chứng minh tích B chia hết cho 3 : Gồm 3 trường hợp :
+) Trường hợp 1 : a chia hết cho 3 => B chia hết cho 3
+) Trường hợp 2 : a chia 3 dư 1 => a + 2 chia hết cho 3 => B chia hết cho 3
+) Trường hợp 3 : a chia 3 dư 2 => a + 1 chia hết cho 3 => B chia hết cho 3
Vậy tích B chia hết cho 3 (2)
Và vì ( 2;3 ) = 1 suy ra B chia hết cho 2 x 3 = 6
Vậy tích của 3 số tự nhiên liên tiêp chia hết cho 6
CMR: Tích của 4 số tự nhiên liên tiếp chia hết cho 24
CMR: Tích của 5 số tự nhiên liên tiếp chia hết cho 120
Ai nhanh mình tích
Gọi 5 số tự nhiên liên tiếp đó là : a , a + 1 , a + 2 , a + 3 , a + 4 .
Theo bài ra , ta có :
a x ( a + 1 ) x ( a + 2 ) x ( a + 3 ) x ( a + 4 )
= a x 5 x ( 1 x 2 x 3 x 4 )
= a x 5 x 24
Mà 5 x 24 = 120 .
=> a chia hết cho 120 .
_ Vậy tích của 5 số tự nhiên liên tiếp chia hết cho 120 .
a)gọi 4 stn liên tiêps là a, a+1, a+2, a+3
có: axa+1xa+2xa+3
ax4x(1x2x3)
ax4x6
ax24
=> a chia hết cho 24
Chứng minh rằng: a) Tích của 2 số tự nhiên liên tiếp chia hết cho 2.
b) Tích của 3 số tự nhiên liên tiếp chia hết cho 6.
c) Tích của 4 số tự nhiên liên tiếp chia hết cho 24.
d) Tích của 5 số tự nhiên liên tiếp chia hết cho 120.
Giải cả 4 phần giúp mình nhé. Xin cảm ơn chân thành các bạn giúp mình giải cả 4 phần!!!
b) Giar sử gọi 3 số tự nhiên liên tiếp là: a, a+1,a+2.
Theo đề bài ta có :
A = a(a + 1) (a + 2) + 6
Ta có 6 = 3x2 mà ( 3,2) = 1
A + 2 vì trong A số tự nhiên liên tiếp có một số chia hết cho 2
A + 3 vì trong A số tự nhiên liên tiếp có một số chia hết cho 3
Vậy tích của 3 STN liên tiếp chia hết cho 6.
Chứng tỏ rằng :
a) Tổng của 4 số tự nhiên chẵn liên tiếp là một số chia hết cho 4
b) Tổng của 5 số tự nhiên chẵn liên tiếp là một số chia hết cho 5
Làm giùm mk nhanh nhé mk cần gấp ai nhanh thì mk tích
a) Gọi 4 số tự nhiên chẳn liên tiếp là a ; a+2 ; a+4 ; a+6
Theo đề bài ta có:
\(a+\left(a+2\right)+\left(a+4\right)+\left(a+6\right)\)
\(=a+a+2+a+4+a+6=4a+12\)
Vì 4a chia hết cho 4 và 12 chia hết 4.
\(\Rightarrow4a+12\)chia hết cho 4.
Vậy tổng của 4 số tự nhiên chẵn liên tiếp là một số chia hết cho 4.
b) Gọi 5 số tự nhiên chẵn liên tiếp là: a ; a+2 ; a+4 ; a+6 ; a+8
Theo đề bài ta có:
\(a+\left(a+2\right)+\left(a+4\right)+\left(a+6\right)+\left(a+8\right)\)
\(=a+a+2+a+4+a+6+a+8=5a+20\)
Vì 5a chia hết chia 5 và 20 cũng chia hết cho 5.
\(\Rightarrow5a+20\)chia hết cho 5.
Vậy tổng của 5 số tự nhiên chẵn liên tiếp là một số chia hết cho 5.
a) Gọi 4 số liên tiếp là a , (a+1), (a+2) , (a+3)
suy ra tổng của 4 sồ liên tiếp là :
a+a+1+a+2+a+3 = 4a+ 4 + 1
1.
\(x\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\)
Tích 5 số tự nhiên liên tiếp sẽ chia hết cho 3,5
Ngoài ra trong 5 số này sẽ luôn tồn tại 2 ít nhất 2 số chẵn, trong đó có 1 số chia hết cho 4
Do đó tích 5 số tự nhiên liên tiếp luôn chia hết cho 2*3*4*5=120
2.(Tương tự)
3.Trong 3 số chẵn liên tiếp luôn tồn tại ít nhất 1 số chia hết cho 4 nên nó chia hết cho 2*2*4=16
Lại có trong 3 số chẵn liên tiếp luôn tồn tại 1 số chia hết cho 3(cái này viết số đó dưới dang \(x\left(x+2\right)\left(x+4\right)\)rồi xét 3 trường hợp với x=3k, x=3k+1 và x=3k+2)
Do đó tích 3 số chẵn liên tiếp chia hết cho 3*16=48.
4.
Trong 4 số chẵn liên tiếp luôn tồ tạ 1 số chia hết cho 4 và 1 số chia hết cho 8, dó đó tích này chia hết cho 2*2*4*8=128
Lại có trong 4 số chẵn liên tiếp tồn tại 1 số chia hết cho 3( làm như phần trên)
Do đó tích chia hết cho 3*128=384
5.
\(m^3-m=m\left(m-1\right)\left(m+1\right)\)
Đây là tích của 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
Nên \(m^3-m\)chia hết cho 2*3=6