tìm max của:
C= \(\frac{x^2+xy+y^2}{x^2-xy+y}\) với x;y>0
tìm max của:
C= \(\frac{x^2+xy+y^2}{x^2-xy+y}\) với x;y>0
tìm max của:
C= \(\frac{x^2+xy+y^2}{x^2-xy+y}\) với x;y>0
a) tìm GTLN của \(E=\frac{x^2+xy+y^2}{x^2-xy+y^2}\) với x,y>0
b) tính GTLN của \(M=\frac{x}{\left(x+1995\right)^2}\) với x>0
PLEASE !!! GIÚP MK VS MK CẦN RẤT GẤP LÀM ƠN!!!
a, Xét : 3 - E = 3x^3-3xy-3y^3-x^3-xy-y^2/x^2-xy+y^2
= 2x^2-4xy+2y^2/x^2-xy+y^2
= 2.(x^2-2xy+y^2)/x^2-xy+y^2
= 2.(x-y)^2/x^2-xy+y^2
>= 0 ( vì x^2-xy+y^2 > 0 )
Dấu "=" xảy ra <=> x-y=0 <=> x=y
Vậy ..........
b, Có : (x+1995)^2 = x^2+3990+1995^2 = (x^2-3990x+1995^2)+7980x
= (x-1995)^2 + 7980x >= 7980x
=> M < = x/7980x = 1/7980 ( vì x > 0 )
Dấu "=" xảy ra <=> x-1995=0 <=> x=1995
Vậy ...............
Cho P=\(\frac{2}{x}-\left(\frac{x^2}{x^2-xy}+\frac{x^2-y^2}{xy}-\frac{y^2}{y^2-xy}\right):\frac{x^2-xy+y^2}{x-y}\)
@tìm đk của x, y để P có nghĩa
b Rút gọn P
bài 1: cho x,y thuộc R thoả mãn x^3+y^3+3.(x^2+y^2)+4.(x+y)+4=0 với xy>0
Tìm Max M = \(\frac{1}{x}+\frac{1}{y}\)
cac ban oi giup minh. minh dang can gap.
a) Cho x;y dương thỏa mãn xy=1. Tìm GTNN: D= x2+3x+y2+3y+\(\frac{9}{x^2+y^2+1}\)
b) Với \(1\le x\le\frac{4\sqrt{3}}{3}\)Tìm GTLN của y=\(8\sqrt{x-1}+x\sqrt{16-3x^2}\)
\(a.\)
\(\text{*)}\) Áp dụng bđt \(AM-GM\) cho hai số thực dương \(x,y,\) ta có:
\(x+y\ge2\sqrt{xy}=2\) (do \(xy=1\) )
\(\Rightarrow\) \(3\left(x+y\right)\ge6\)
nên \(D=x^2+y^2+\frac{9}{x^2+y^2+1}+3\left(x+y\right)\ge x^2+y^2+\frac{9}{x^2+y^2+1}+6\)
\(\Rightarrow\) \(D\ge\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]+5\)
\(\text{*)}\) Tiếp tục áp dụng bđt \(AM-GM\) cho bộ số loại hai số không âm gồm \(\left(x^2+y^2+1;\frac{9}{x^2+y^2+1}\right),\) ta có:
\(\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]\ge2\sqrt{\left(x^2+y^2+1\right).\frac{9}{\left(x^2+y^2+1\right)}}=6\)
Do đó, \(D\ge6+5=11\)
Dấu \("="\) xảy ra khi \(x=y=1\)
Vậy, \(D_{min}=11\) \(\Leftrightarrow\) \(x=y=1\)
\(b.\) Bạn tìm điểm rơi rồi báo lại đây
b
\(8\sqrt{x-1}=4.2.\sqrt{x-1}.1\le4.\left(x-1+1\right)=4x\)
\(x.\sqrt{16-3x^2}\le\frac{x^2+16-3x^2}{2}=8-x^2\)
\(\Rightarrow y\le4x-x^2+8=-\left(x-2\right)^2+12\le12\)
Dấu bằng xảy ra khi \(x=2\)
cho biết A=\(\frac{2}{x}\)-\(\frac{^{x^2}}{x^2+xy}\)-\(\frac{x^2-y^2}{x.y}\)-\(\frac{y^2}{x.y+y^2}\).\(\frac{x+y}{x^2+xy+y}\)
a,rút gọn A và tìm điều kiên của x,y để A xác định
b,tính gtri của A tại x=2,y=\(\frac{1}{2}\);x=1,y=1
c, tìm x \(\in\)z để A =1
Tìm GTNN, GTLN của
H= x^2+y^2 -5xy với x+1=2
I= x^2-xy+y^2+2x-2y
K= x^2+y^2+z^2+x+y+z
G = x^2-2xy+2y^2+2x-10y+17
Giúp mình với!!!!!
Cho x, y khác 0 thỏa mãn \(xy\left(x+y\right)=x^2-xy+y^2\). Tìm GTLN của \(A=\frac{4}{x^3}+\frac{11}{y^3}\)