Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Vi
Xem chi tiết
Võ Đông Anh Tuấn
25 tháng 7 2016 lúc 9:27

Bài 1 : \(A=\frac{2016}{x^2-2x+2017}\) đạt GTLN khi \(x^2-2x+2017\) đạt GTNN .

\(x^2-2x+2017=x^2-2x+1+2016=\left(x-1\right)^2+2016\Rightarrow GTNN\) của \(x^2-2x+2017\) là \(2016\)

\(\Rightarrow GTLN\) của \(A\) là : \(\frac{2016}{2016}=1\)

Võ Đông Anh Tuấn
25 tháng 7 2016 lúc 9:33

Bài 2 :

a ) Đặt \(A=\frac{2}{6x-9x^2-21}.A\) đạt \(GTNN\) Khi \(\frac{1}{A}\) đạt \(GTLN\).

Ta có : \(\frac{1}{A}=\frac{-9x^2+6x-21}{20}=-\frac{9}{20}\left(x-\frac{1}{3}\right)^2-1\le-1\)

Vậy \(Max\left(\frac{1}{A}\right)=-1\Leftrightarrow x=\frac{1}{3}\)

\(\Rightarrow Min_A=-1\Rightarrow x=\frac{1}{3}\)

b ) Đặt \(B=\left(x-1\right)\left(x-2\right)\left(x-5\right)\left(x-6\right)\)

Ta có : \(B=\left[\left(x-1\right)\left(x-6\right)\right].\left[\left(x-2\right)\left(x-5\right)\right]=\left(x^2-7x+6\right)\left(x^2-7x+10\right)\)

Đặt \(y=x^2-7x+8\Rightarrow B=\left(y+2\right)\left(y-2\right)=y^2-4\ge-4\)

\(Min_B=-4\) khi và chỉ khi \(x^2-7x+8=0\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{7+\sqrt{17}}{2}\\x=\frac{7-\sqrt{17}}{2}\end{array}\right.\)

 

Ayase Naru
Xem chi tiết
doraemon
Xem chi tiết
Nguyễn Ánh Miku
Xem chi tiết
Đặng Yến Linh
16 tháng 11 2016 lúc 21:48

GTLN của biểu thức khi mẫu số nhỏ nhất mà mẫu số

/x - 1015/ + 2 nhỏ nhất là 2 vì / x-2015/ > hoặc = 0

/x- 2015/ =0 khi x= 2015 thi biểu thức trên có GTLN = 2016/2 = 1008

Đặng Yến Linh
16 tháng 11 2016 lúc 19:52

1008

Trần Minh Ánh
Xem chi tiết
Nguyễn Việt Hoàng
18 tháng 8 2020 lúc 15:41

a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)

\(N=\frac{\left(x+2\right)^2}{x}.\left(1-\frac{x^2}{x+2}\right)-\frac{x^2+6x+4}{x}\)

\(N=\frac{\left(x+2\right)^2}{x}.\frac{x+2-x^2}{x+2}-\frac{x^2+6x+4}{x}\)

\(N=\frac{\left(x+2\right)\left(x+2-x^2\right)-x^2-6x-4}{x}\)

\(N=\frac{x^2+2x-x^3+2x+4-2x^2-x^2-6x-4}{x}\)

\(N=\frac{-x^3-2x^2-2x}{x}\)

\(N=\frac{-x\left(x^2+2x+2\right)}{x}\)

\(N=-\left(x^2+2x+2\right)\)

b) \(N=-\left(x^2+2x+2\right)\)

\(\Leftrightarrow N=-\left(x^2+2x+1+1\right)\)

\(\Leftrightarrow N=-\left(x+1\right)^2-1\le-1\)

Max N = -1 \(\Leftrightarrow x=-1\)

Vậy .......................

Khách vãng lai đã xóa
Dễ thương khi đào mương
Xem chi tiết
Thùy Dương
31 tháng 3 2017 lúc 6:55

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

Phạm Minh Thành
Xem chi tiết
Phạm Tú Uyên
Xem chi tiết
Edogawa Conan
17 tháng 10 2019 lúc 23:26

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

Edogawa Conan
17 tháng 10 2019 lúc 23:29

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10

Edogawa Conan
17 tháng 10 2019 lúc 23:32

3a) Ta có:

|x - y - 5| + 2007.(y - 3)2004 = 0

<=> \(\hept{\begin{cases}x-y-5=0\\y-3=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=y+5\\y=3\end{cases}}\)

<=> \(\hept{\begin{cases}x=8\\y=3\end{cases}}\)

b) Ta có :

(x + y)2016 + 2007.|y - 1| = 0

<=> \(\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=-y\\y=1\end{cases}}\)

<=> \(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

c) (x - 1)2 + (y + 3)2 = 0

<=>  \(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

Yasuo
Xem chi tiết
ngonhuminh
24 tháng 1 2017 lúc 16:27

Đặt bẫy hả