cho \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}\). Tìm giá trị của biểu thức A=\(\frac{a-b+c}{a+2b-c}\)
cho \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}\) tìm giá trị của biểu thức \(A=\frac{a-b+c}{a+2b-c}\)
cho \(\frac{a}{2}=\frac{b}{5}=\frac{c}{.7}.\)Tìm giá trị của biểu thức A=\(\frac{a-b+c}{a+2b-c}\)
Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\Rightarrow a=2k;b=5k;c=7k\)thay vào A
\(A=\frac{a-b+c}{a+2b-c}=\frac{2k-5k+7k}{2k+2.5k-7k}=\frac{4k}{5k}=\frac{4}{5}\)
Cho \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}\) . Tìm giá trị biểu thức A = \(\frac{a-b+c}{a+2b-c}\)
Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\)
=> a=2k; b=5k; c=7k
Suy ra:
A=\(\frac{a-b+c}{a+2b-c}=\frac{2k-5k+7k}{2k+10k-7k}=\frac{4.k}{-1.k}=\frac{4}{-1}=-4\)
Vậy A=-4
Cho \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}\). Tìm giá trị của biểu thức \(A=\frac{a-b+c}{a+2b-c}\)
Giải:
Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\)
\(\Rightarrow a=2k,b=5k,c=7k\)
Ta có:
\(A=\frac{a-b+c}{a+2b-c}=\frac{2k-5k+7k}{2k+2\left(5k\right)-7k}=\frac{\left(2-5+7\right)k}{2k+10k-7k}=\frac{4k}{5k}=\frac{4}{5}\)
Vậy \(A=\frac{4}{5}\)
Cho\(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}\).Tìm giá trị biểu thức \(A=\frac{a-b+c}{a+2b-c}\)
Khi chuyển một số hạng từ vế này sang vế kia của một đẳng thức, ta phải đổi dấu số hạng đó: dấu thành dấu và dấu thành dấu
Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\)\(=>\hept{\begin{cases}a=2k\\b=5k\\c=7k\end{cases}}\)
Thay vào là được ...
lười quá :)
Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\)
=> a=2k, b=5k, c=7k
\(A=\frac{a-b+c}{a+2b-c}=\frac{2k-5k+7k}{2k+2.5k-7k}=\frac{4k}{5k}=\frac{4}{5}\)
Cho \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}\) . Tìm giá trị biểu thức A=\(\frac{a-b+c}{a+2b-c}\)
Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\)
\(\Rightarrow a=2k;b=5k;c=7k\)
Thế vào biểu thức A, ta được: \(A=\frac{2k-5k+7k}{2k+2.5k-7k}=\frac{4k}{5k}=\frac{4}{5}\)
Vậy \(A=\frac{4}{5}\)
Cho \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}\). Tìm giá trị biểu thức \(A=\frac{a-b+c}{a+2b-c}\)
Cho \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}\).Tìm giá trị của biểu thức A=\(\frac{a-b+c}{a+2b-c}\)
\(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=\frac{a-b+c}{2-5+7}=\frac{a+2b-c}{2+2.5-7}\Leftrightarrow\frac{a-b+c}{4}=\frac{a+2b-c}{5}\Leftrightarrow\frac{a-b+c}{a+2b-c}=\frac{4}{5}\)
Cho \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}\).Tìm giá trị của biểu thức A=\(\frac{a-b+c}{a+2b-c}\)