chứng tỏ rằng : A=6^3+2.6^2+3^3 chia hết cho 13
chứng minh
A = 1+3+3^2+3^3+...3^11 chứng tỏ rằng chia hết cho 13
B = 3+4+2^2+2^3+....+2^30 chứng tỏ rằng chia hết cho 11
C = 3^1000-1 chứng tỏ rằng chia hết cho 4
TA CÓ:
A=30+3+32+33+........+311
(30+3+32+33)+....+(38+39+310+311)
3(0+1+3+32)+......+38(0+1+3+32)
3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)
\(Cho\:A=2^1+2^2+2^3+2^4+...+2^{12}+2^{13}.\:\)Chứng tỏ rằng A chia hết cho 3, cho 7 và 15
\(Cho\:C=3+3^2+3^3+3^4+...+3^9\)Chứng tỏ rằng C chia hết cho 13
cho A = 1 + 3 + 3^2 + 3^3 + ..... + 3^11
chứng tỏ rằng a chia hết cho 14
cho B = 3^! + 3^3 + 3^5 + ...... +3^1991
chứng tỏ rằng B chia hết cho 13 , cho 41
a) Cho A = 2+2^2+2^3+...+2^180. Chứng tỏ rằng A chia hết cho 3,cho 7, cho 15
b) Cho B = 3+3^3+3^5+...+3^1991. Chứng tỏ rằng B chia hết cho 13,cho 41
câu hỏi tương tự
cứ di chuột vào câu hỏi ế
cho A = 1+3+3^2 + 3^3 + .....+ 3^11 chứng tỏ a chia hết cho 14
cho b = 3^1 + 3^3 + 3^4 +.... + 3^1991 chứng tỏ rằng B chia hết cho 13 , 41
Câu 1 : A=1+3+3^2+3^3+3^4...+3^300+3^301+3^302 có chia hết cho 13 ko
Câu 2: A=6+16+16^2+16^3+...+16^8+16^9 chứng tỏ rằng A vừa chia hết cho 2 vừa chia hết cho 5
Cho A= \(^{^{13+13^2+13^3+13^4+13^5+13^6}}\). Chứng tỏ rằng A chia hết cho 2
Ta có: \(A=\left(13+13^2\right)+\left(13^3+13^4\right)+\left(13^5+13^6\right)\)
\(=13\left(13+1\right)+13^3\left(13+1\right)+13^5\left(13+1\right)\)
\(=14\left(13+13^3+13^5\right)\)
\(=2.7.\left(13+13^3+13^5\right)\) chia hết cho 2
Cho S = 1+2+2^2+2^3+2^4+2^5+2^6+2^7
Chứng tỏ rằng S chia hết cho 4
Cho S = 1+2+2^2+2^3+2^4+2^5+2^6+2^7
Chứng tỏ rằng S chia hết cho 4 VÀ 13
Chứng tỏ rằng A=1+3+3^ 2 +3^ 3 +...3^ 97 +3^ 98 chia hết cho 13
\(A=\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)
\(=13\cdot\left(1+...+3^{96}\right)⋮13\)