Tìm hai số tự nhiên biết tổng của chúng bằng 432 và ƯCLN của chúng là 36.
1) Tìm hai số tự nhiên biết rằng tổng của chúng bằng 432 và ƯCLN của chúng bằng 36
Gợi ý : gọi : hai số tự nhiên cần tìm là : a và b
theo đề cho ta có : a + b = 432 và ƯCLN ( a, b ) = 36
Trình bày đấy
là siêu trộm mà sao ko trộm kiến thức đi mà cứ phải đi hỏi thế
Tìm hai số tự nhiên có tổng bằng 432 và ƯCLN của chúng là 36
Tìm hai số tự nhiên có tổng bằng 432 và ƯCLN của chúng bằng 36
tìm hai số tự nhiên có tổng là 432 và ƯCLN của chúng là 36
Theo bài, ta gọi 2 số tự nhiên cần tìm là a và b ( khác 0 ). Vì 36 là ƯCLN của a và b nên ta đặt :
a = 36q1
b = 36q2
Trong đó : ( q1 ; q2 ) = 1 và q1 ; q2 \(\in\)N*
Ta có :
a + b = 432
<=> 36q1 + 36q2 = 432
<=> 36( q1 + q2 ) = 432
<=> q1 + q2 = 432 : 36
<=> q1 + q2 = 12
Vì q1 và q2 nguyên tố cùng nhau nên trong các tổng các số tự nhiên có tổng bằng 12 ta tìm được 2 số nguyên tố : 5 và 7. Vậy ta suy ra, q1 + q2 = 5 + 7 = 7 + 5
- Nếu q1 = 5 và q2 = 7 thì ta tìm được 2 giá trị a và b là
a = 5 . 36 = 180
b =7 . 36 = 252
( 180 + 252 = 432 - thỏa mãn )
- Nếu q1 = 7 và q2 = 5 thì ta tìm được 2 giá trị a và b là :
a = 7. 36 = 252
b = 5 . 36 =180
( 252 + 180 = 432 - thỏa mãn )
Kết luận : 2 số tự nhiên cần tìm là 180 và 252
CHỊ ƠI, EM MƯỢN BÀI TOÁN CỦA CHỊ ĐẺ THỬ HỌC THÔI Ạ, CẢM ƠN CHỊ. EM HỌC LỚP 6, CHẮC CHỊ ĐÃ HỌC LỚP 7 RỒI. CHÚC CHỊ HỌC TỐT.
tìm 2 số tự nhiên có tổng bằng 432 và ƯCLN của chúng là 36
Gọi 2 số tự nhiên cần tìm là a và b
Vì \(ƯCLN\left(a,b\right)=36\Rightarrow\hept{\begin{cases}a=36.m\\b=36.n\end{cases};\left(m,n\right)=1;m,n\in N}\)
Thay a = 36.m, b = 36.n vào a + b = 432, ta có:
36.m + 36.n = 432
=> 36.(m + n) = 432
=> m + n = 432 : 36
=> m + n = 12
Vì m và n nguyên tố cùng nhau
=> Ta có bảng giá trị:
m | 1 | 11 | 5 | 7 |
n | 11 | 1 | 7 | 5 |
a | 36 | 396 | 180 | 252 |
b | 396 | 36 | 252 | 180 |
Vậy các cặp (a,b) cần tìm là:
(36; 396); (396; 36); (180; 252); (252; 180).
tìm 2 số tự nhiên có tổng bằng 432 và ƯCLN của chúng là 36
Gọi 2 số tự nhiên cần tìm là a và b, ta có:
a = 36 ; a = 180
b= 396 ; b = 252
Tìm 2 số tự nhiên có tổng bằng 432 và ƯCLN của chúng là 36.
2 số đó là:(36;396);(180;252);(252;180);(396;36).
k hộ nhé. các p
Tìm 2 số tự nhiên có tổng bằng 432 và ƯCLN của chúng là 36
bài này là 36 và 396 nha
Tìm 2 số tự nhiên có tổng bằng 432 và ƯCLN của chúng là 36
ta gọi 2 số đó là a;b
ta có:(a;b)=36 suy ra a=36.n;b=36.m. Vì a+b=432 nên 36.n+36.m=432=36.(m+n)=432 suy ra m+n=12
nếu m=1 suy ra n=11 vậy a=36;b=396
..........
...............
tìm 6 cặp số m;n và suy ra a;b
gọi 2 số tự nhiên cần tìm là x và y .Vì 36 là ƯCLN của x và y nên x=36m,y=36n
theo đề ta có : x+y=432 hay 36m+36n=432 suy ra 36(m+n)=432 suy ra : m+n=12
ta có bảng sau
m 1 2 3 4 5
n 11 10 9 8 7
với m=1 ; n=11 ta được (x,y)=(36;396) chọn
với m=2 ; n=10 ta được ( x,y)= ( 72;360) loại
.....................
.................................
..................................
.............................................
với m=5;n=7 ta được (x;y)=(180;252) chọn
Vây 2 số cần tìm là : ( 36;396 ) hoặc ( 180 ; 252 )