giải hệ phương trình \(\hept{\begin{cases}\frac{4x+5y}{xy}=2\\20x-30y+xy=0\end{cases}}\)
giải hệ phương trình
\(\hept{\begin{cases}2x^2+xy+3y^2-2y-4=0\\3x^2+5y^2+4x-12=0\end{cases}}\)
Giải hệ phương trình :
\(\hept{\begin{cases}2x^2+xy+3y^2-2y-4=0\\3x^2+5y^2+4x-12=0\end{cases}}\)
Giải:
Lấy \(2x\left(1\right)-\left(2\right)\Rightarrow x^2+2xy+y^2-4y-4x+4=0\)
\(\Leftrightarrow\left(x+y\right)^2-4\left(x+y\right)+4=0\Leftrightarrow x+y=2\)
Giải ra được hệ phương trình có nghiệm duy nhất là \(\left(1;1\right)\)
Câu hỏi của Pham Hoàng Lâm - Toán lớp 9 - Học toán với OnlineMath
Giải hệ phương trình:
\(\hept{\begin{cases}3\left(x^3-y^3\right)+20x^2+2xy+5y^2+39x=100\\x^2+y^2+xy-3x-4y+4=0\end{cases}}\)
Viết lại phương trình thứ 2 của hệ thành:
\(\hept{\begin{cases}x^2+x\left(y-3\right)+y^2-4y+4=0\\y^2+y\left(x-4\right)+x^2-3x+4=0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}\Delta_x\ge0\\\Delta_y\ge0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}1\le y\le\frac{7}{3}\\0\le x\le\frac{4}{3}\end{cases}}\)
Thế \(xy=-x^2-y^2+3x+4y-4\)từ pt (2) vào pt (1) ta được:
\(3x^3+18x^2+45x-3y^3+3y^2+8y-108=0\)
Xét hàm số: \(f\left(x\right)=3x^3+18x^2+45x\)trên \(\left[0;\frac{4}{3}\right]\)ta có: \(f'\left(x\right)=9x^2+6x+45>0\)nên hàm số f(x) đồng biến. suy ra: \(f\left(x\right)\le f\left(\frac{4}{3}\right)=\frac{892}{9}\)
Xét hàm số: \(g\left(y\right)=-3y^3+3y^2+8y-108\)trên \(\left[0;\frac{7}{3}\right]\)ta có: \(g'\left(y\right)=-9y^2+6y+8,\)\(g'\left(y\right)=0\)\(\Leftrightarrow\)\(y=\frac{4}{3}\) suy ra: \(g\left(y\right)\le g\left(\frac{4}{3}\right)=\frac{-892}{0}\)
suy ra: \(f\left(x\right)+g\left(y\right)\le0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=\frac{4}{3}\)
thử lại thấy đúng
nên cặp nghiệm \(\left(x;y\right)=\left(\frac{4}{3};\frac{4}{3}\right)\)thỏa mãn hệ
p/s: chúc bạn học tốt, cách này đối vs bạn chắc khó hiểu, có j thì hỏi thầy cô dạy cho dễ hiểu nha hoặc ib mk (nhưng mk mak giải thích thì chắc bạn khó hiểu hơn ^^ ko có khiếu ăn nói)
Giải hệ phương trình:
a) \(\hept{\begin{cases}2xy+3y^2=5xy^2\\4x^2+y^2=5xy^2\end{cases}}\)
b) \(\hept{\begin{cases}4x^3-y^3=x+2y\\52x^2-82xy+21y^2=-9\end{cases}}\)
c) \(\hept{\begin{cases}xy-\frac{x}{y}=9,6\\xy-\frac{y}{x}=7,5\end{cases}}\)
Giải hệ phương trình \(\hept{\begin{cases}\frac{x}{x^2-y}+\frac{5y}{x+y^2}=4\\5x+y+\frac{X^2-5y^2}{xy}=6\end{cases}}\)
giải hệ phương trình: \(\hept{\begin{cases}\frac{\left(x-y\right)^2-1}{xy}-\frac{2\left(x+y-1\right)}{x+y}=-4\\4x^2+5y+\sqrt{x+y-1}+6\sqrt{x}=13\end{cases}}\)
giải hệ phương trình
\(\hept{\begin{cases}1+x+xy=5y\\1+x^2y^2=5y^2\end{cases}}\)
Giải hệ phương trình
a)\(\hept{\begin{cases}2xy+3y^2=5xy^2\\4x^2+y^2=5xy^2\end{cases}}\)
b)\(\hept{\begin{cases}4x^3-y^3=x+2y\\52x-82xy+21y^2=-9\end{cases}}\)
c)\(\hept{\begin{cases}xy-\frac{x}{y}=9,6\\xy-\frac{y}{x}=7,5\end{cases}}\)
MONG CÁC BẠN ZẢI NHANH ZÚP
c. \(\hept{\begin{cases}xy-\frac{x}{y}=9,6\left(1\right)\\xy-\frac{y}{x}=7,5\left(2\right)\end{cases}}\)
Lấy (1)-(2) ta có \(\frac{y}{x}-\frac{x}{y}=\frac{21}{10}\)\(\Rightarrow\)\(\frac{y^2-x^2}{xy}=\frac{21}{10}\Rightarrow10y^2-21xy-10x^2=0\Rightarrow\left(5y+2x\right)\left(2y-5x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5y+2x=0\\2y-5x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{5}{2}y\\x=\frac{2}{5}y\end{cases}}}\)
Với \(x=-\frac{5}{2}y\Rightarrow\left(-\frac{5}{2}y\right)y-\frac{-\frac{5}{2}y}{y}=9,6\Rightarrow-\frac{5}{2}y^2=\frac{71}{10}\Rightarrow y^2=-\frac{71}{25}\left(l\right)\)
Với \(x=\frac{2}{5}y\Rightarrow\frac{2}{5}y.y-\frac{\frac{2}{5}y}{y}=9,6\Rightarrow\frac{2}{5}y^2=10\Rightarrow y^2=25\Rightarrow\orbr{\begin{cases}y=5\\y=-5\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}}\)
Vậy \(\left(x,y\right)=\left(2,5\right);\left(-2,-5\right)\)
Giải các hệ phương trình sau:
\(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)\(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}}\)\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}}\)\(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\)
\(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\)
a) \(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)
\(\cdot x=1\Rightarrow\hept{\begin{cases}0=0\\\left(y+1\right)\left(2y-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\y=-1;y=\frac{1}{2}\end{cases}}\)
\(\cdot y=-1\Rightarrow\hept{\begin{cases}\left(x-1\right)\left(2x-1\right)=0\\0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1;x=\frac{1}{2}\\0=0\end{cases}}\)
\(\cdot x=2y\Rightarrow\hept{\begin{cases}\left(2y-1\right)5y=0\\0=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\Rightarrow x=0\\y=\frac{1}{2}\Rightarrow x=1\end{cases}}\)
\(y=-2x\Rightarrow\hept{\begin{cases}0=0\\\left(1-2x\right)5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\Rightarrow y=-1\\x=0\Rightarrow y=0\end{cases}}\)
b) \(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\\left(\frac{21}{8}-y\right)^2+y^2=\frac{37}{6}y\left(\frac{21}{8}-y\right)\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\2y^2-\frac{21}{4}y+\frac{441}{64}=-\frac{37}{6}y^2+\frac{259}{16}y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\1568y^2-4116y+1323=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{8}\\y=\frac{9}{4}\end{cases}}hay\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{3}{8}\end{cases}}\)
c) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x-y\right)^2=-4x^2y^2+2xy\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2y^2-4x^2y-4xy^2+x^2+y^2-2xy+2xy=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4x^2y^2-4x^2y+x^2+4x^2y^2-4xy^2+y^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x\right)^2+\left(2xy-y\right)^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=\frac{-1}{2}\end{cases}}\)
d) \(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\). Đặt \(\hept{\begin{cases}x+y=S\\xy=P\end{cases}}\), ta có: \(\hept{\begin{cases}S+P=71\\SP=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P\left(71-P\right)=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P^2-71P+880=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S=16\\P=55\end{cases}}hay\hept{\begin{cases}S=55\\P=16\end{cases}}\)
\(\cdot\hept{\begin{cases}S=16\\P=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=16\\xy=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y\left(16-y\right)=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y^2-16y+55=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=11\end{cases}}hay\hept{\begin{cases}x=11\\y=5\end{cases}}\)
\(\cdot\hept{\begin{cases}S=55\\P=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=55\\xy=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y\left(55-y\right)=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y^2-55y+16=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{55-3\sqrt{329}}{2}\\y=\frac{55+3\sqrt{329}}{2}\end{cases}}hay\hept{\begin{cases}x=\frac{55+3\sqrt{329}}{2}\\y=\frac{55-3\sqrt{329}}{2}\end{cases}}\)
e) \(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\). Đặt \(\hept{\begin{cases}S=\sqrt{x}+\sqrt{y}\\P=\sqrt{xy}\end{cases}}\), ta có \(\hept{\begin{cases}SP=12\\P\left(S^2-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\P\left(\frac{144}{P^2}-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\2P^4+28P^2-144P=0\end{cases}}\)
Tự làm tiếp nhá! Đuối lắm luôn