Tìm các số nguyên tố x, y thoả mãn :
( x - 2)2 . ( y - 3)2 = 4
tìm các số nguyên tố x;y thoả mãn:(x-2)^2.(y-3)=-4
KO TỀM ĐC VÌ X NGUYÊN TỐ THÌ Y KO NGUYÊN TỐ .(CHƯA CHẮC ĐÃ DÚNG NHA)
tìm các số nguyên tố x,y thoả mãn :(x-2)2.(y-3)2=-4
Ta có: (x - 2)2 > 0; (y - 3)2 > 0
Mà (x - 2)2 . (y - 3)2 = -4 < 0 (vô lí)
Vậy không có x; y thỏa mãn.
Tìm các số nguyên x,y thoả mãn: x^4 +2x^3 +x^2 + x+ 3= y^2
Tìm 3 số nguyên tố x, y, z thoả mãn x2+y3=z4
a.Tìm x, y nguyên biết: xy + 3x - y = 6
b. Tìm mọi số nguyên tố thoả mãn: x2 - 2y2 = 1
c. Tìm các số nguyên thoả mãn: x - y + 2xy = 7
d. Tìm x, y thuộc N biết : 25 - y2 = 8( x - 2012)2
a.Tìm x, y nguyên biết: xy + 3x - y = 6
b. Tìm mọi số nguyên tố thoả mãn: x2 - 2y2 = 1
c. Tìm các số nguyên thoả mãn: x - y + 2xy = 7
d. Tìm x, y thuộc N biết : 25 - y2 = 8( x - 2012)2
a.Tìm x, y nguyên biết: xy + 3x - y = 6
b. Tìm mọi số nguyên tố thoả mãn: x2 - 2y2 = 1
c. Tìm các số nguyên thoả mãn: x - y + 2xy = 7
d. Tìm x, y thuộc N biết : 25 - y2 = 8( x - 2012)2
tìm x, y là các số nguyên tố thoả mãn 15x - 7y = y^2
Toán cô Hương BG ấy gì thảo nào quen quen
tìm x,y nguyên thoả mãn :\(x^2+y^2=1999\)
tìm các số nguyên x,y thỏa mãn \(9x^2+2=y^2+y\)
tìm x nguyên thoả mãn :\(2^x+3^x=5^x\)
a/ Ta có VP là số lẻ nên VT cũng phải là số lẻ. Hay trong 2 số x, y phải có 1 số lẻ.
Giả sử số lẻ đó là x thì ta có
\(\hept{\begin{cases}x=2m+1\\y=2n\end{cases}}\)
\(\Rightarrow\left(2m+1\right)^2+\left(2n\right)^2=1999\)
\(\Leftrightarrow4\left(m^2+m+n\right)=1998\)
Ta thấy VT chia hết chi 4 còn VP không chia hết cho 4 nên phương trình vô nghiệm
b/ \(9x^2+2=y^2+y\)
\(\Leftrightarrow36x^2+8=4y^2+4y\)
\(\Leftrightarrow\left(2y+1\right)^2-36x^2=9\)
\(\Leftrightarrow\left(2y+1-6x\right)\left(2y+1+6x\right)=9\)
Câu còn lại thì chia cả 2 vế cho \(5^x\)rồi làm tiếp