Cho tam giác ABC, D, E, F thứ tự là tiếp điểm của đường tròn nội tiếp tam giác ABC(D thuộc BC, E thuộc AC, F thuộc AB). H là hình chiếu của D trên EF. C/m HD là phân giác của góc BHC.
Cho tam giác ABC đều, M là điểm bất kì thuộc miền trong tam giác. Gọi D, E, F lần lượt là hình chiếu vuông góc của M lên các cạnh BC, AB, AC và I là tâm đường tròn nội tiếp tam giác ABC. Tìm giá trị của k biết rằng \(\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF}=k\overrightarrow{MI}\)
Cho tam giác ABC , AB> AC ngoại tiếp đường tròn (I ) và nội tiếp đường tròn (O). Đường tròn (I ) tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi H là hình chiếu vuông góc của D trên EF. Đường tròn ngoại tiếp tam giác AEF cắt đường tròn (O) tại K (K khác A).
a) Chứng minh HD là phân giác của góc BHC .
b) Chứng minh ba điểm I, H, K thẳng hàng.
Cho tam giác nhọn ABC nội tiếp đường tròn ( o ) ( AB< AC ) M là điểm trên cung BC , vẽ MD vuông góc AB tại D ; ME vuông góc AC tại E. Gọi F là giao điểm của BC và DE. Cmr: a) 4 điểm A,D,M,E cùng thuộc 1 đường tròn b) Tam giác MBC đồng dạng Tam giác MDE c) MF vuông góc BC d) DE <= BC
Cho đường tròn (I) nội tiếp tam giác ABC, tiếp xúc với cạnh BC, CA, AB lần lượt tại D, E, F. Gọi M là giao điểm của BC và phân giác của góc BIC; N là giao điểm của EF và phân giác của góc EDF. Gọi P, Q theo thứ tự là giao điểm của AI với đường tròn (I) và EF( P thuộc cung EF không chứa điểm D). Chứng minh rằng
a, IM//ND
b, Tam giác IDM đồng dạng với tam giác PQN
c, 3 điểm A, M, N thẳng hàng
Không mất tính tổng quát , giả sử AB < AC ( bỏ qua trường hợp đơn giản AB = AC )
Dễ thấy P là điểm chính giữa \(\widebat{EF}\) nên D,N,P thẳng hàng
Cần chứng minh \(\widehat{IMC}=\widehat{PDC}\)
Ta có : \(\widehat{IMC}=\widehat{MIB}+\widehat{B_1}=\frac{1}{2}\widehat{BIC}+\widehat{B_1}=\frac{1}{2}\left(180^o-\widehat{B_1}-\widehat{C_1}\right)+\widehat{B_1}\)
\(=\frac{1}{2}\left(180^o-\frac{\widehat{ABC}}{2}-\frac{\widehat{ACB}}{2}\right)+\frac{\widehat{ABC}}{2}=90^o+\frac{\widehat{ABC}}{4}-\frac{\widehat{ACB}}{4}\)
\(\widehat{PDC}=\widehat{PDE}+\widehat{EDC}=\frac{1}{2}\widehat{EDF}+\widehat{EDC}\)\(=\frac{1}{2}\left(180^o-\widehat{FDB}-\widehat{EDC}\right)+\widehat{EDC}\)
\(=90^o-\frac{\widehat{FDB}}{2}+\frac{\widehat{EDC}}{2}=90^o-\frac{90^o-\widehat{B_1}}{2}+\frac{90^o-\widehat{C_1}}{2}\)
\(=90^o+\frac{\widehat{ABC}}{4}-\frac{\widehat{ACB}}{4}\)
\(\Rightarrow\widehat{IMC}=\widehat{PDC}\Rightarrow IM//ND\)
b) Theo câu a suy ra \(\widehat{MID}=\widehat{IDP}\)
Mà \(\Delta PID\)cân tại I ( do IP = ID ) nên \(\widehat{IPD}=\widehat{IDP}\)
Suy ra \(\widehat{MID}=\widehat{IPD}=\widehat{QPN}\)
\(\Rightarrow\Delta IDM\approx\Delta PQN\left(g.g\right)\)
c) từ câu b \(\Rightarrow\frac{IM}{PN}=\frac{ID}{PQ}=\frac{IP}{PQ}\)( 1 )
Theo hệ thức lượng, ta có : \(IQ.IA=IE^2=IP^2\)
Do đó : \(\frac{QP}{IP}=1-\frac{IQ}{IP}=1-\frac{IP}{IA}=\frac{PA}{IA}\)
Suy ra \(\frac{IP}{QP}=\frac{IA}{PA}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{IM}{PN}=\frac{IA}{PA}\)kết hợp với IM // PN suy ra A,M,N thẳng hàng
Một số bài toán hay về tâm nội tiếp:
Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.
Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam giác AID,BIC. M,N là trung điểm các cạnh AB,CD. Chứng minh rằng MN chia đôi ST.
Bài 3: Cho tam giác ABC, đường tròn (I) nội tiếp tam giác ABC tiếp xúc BC,CA,AB tại D,E,F. Kẻ DH vuông góc EF tại H, G là trung điểm DH. Gọi K là trực tâm tam giác BIC. Chứng minh rằng GK chia đôi EF.
Bài 4: Cho tam giác ABC ngoại tiếp (I), (I) tiếp xúc với BC,CA,AB tại D,E,F. Gọi AI cắt DE,DF tại K,L; H là chân đường cao hạ từ A của tam giác ABC, M là trung điểm BC. Chứng minh rằng bốn điểm H,K,L,M cùng thuộc một đường tròn có tâm nằm trên (Euler) của tam giác ABC.
chị gisp em bài này
Cho tam giác ABC nội tiếp đường tròn (O). M là một điểm trên cung BC không chứa A. Gọi. D, E, F lần lượt là hình chiếu của M trên BC, AC và AB
a) Chứng minh rằng D, E, F thẳng hàng.
b) Gọi I, J, K lần lượt là các điểm đối xứng của M qua D, E, F. Chứng minh rằng I, J, K cùng thuộc một đường thẳng và đường thẳng đó đi qua trực tâm H của tam giác ABC.
Cho tam giác ABC. Đường tròn nội tiếp tam giác tiếp xúc với các cạnh BC, CA, AB tại D, E, F. CMR: HD là tia phân giác của góc BHC
Ai đó làm ơn giúp với
Cho tam giác ABC ,góc A =90,AB=3cm,AC=4cm,lấy điểm D đối xứng vs B qua AC ,E đối xững vs C qua AB
a,tứ giác BCDE là hình j
b, gọi F là hình chiếu của E trên BC,BM là phân giác của góc FBE(M thuộc EF)chứng minh tam giác FBM đồng dạng tam giác ACB
c,Tính FM