Cho hình chữ nhật ABCD nội tiếp đường tròn tâm O. Trên cung nhỏ AB lấy điểm E ( E ko trùng A và B), F là giao của AB và CE.
a) CM tứ giác FBHE nội tiếp
b) CM \(\widehat{FHA}=\widehat{ADE}\) ???
Cho hình chữ nhật ABCD nội tiếp đường tròn (O) tren cung nhỏ AB của đường tròn lấy điểm E (E không trùng với A,B ) . Gọi H là giao điểm của AE với BC,F là giao điểm của AB với CE
a CM: FBHE nội tiếp
b CM: góc FHA = góc ADE
c Gọi K là giao của AE với DC. CM tam giác FBE tiếp xúc với đường tròn ngoại tiếp tam giác KED
a) Gọi O là giao điểm của AC và BD
=> OA=OB=OC=OD ( ABCD là hình chữ nhật)
=> O LÀ tâm đường tròn
=> AC là đường kính
=> \(\widehat{AEC}=90^o\),\(\widehat{ABC}=90^o\)( Chắn cung AC)
=> \(\widehat{FEH}+\widehat{FBH}=180^o\)
=> Tứ giác EFHB nội tiếp
b)Từ a => \(\widehat{FHA}=\widehat{EBA}\)(1)
\(\widehat{EBA}=\widehat{EDA}\)( cùng chắn cung AE)(2)
Từ (1), (2)
=> điều phải chứng minh
c) Tam giác tiếp xúc với đường tròn ?
câu a, b chắc làm đc
còn câu c lại phải suy nghĩ rồi
hok tốt
(Đà Nẵng - 2020)
Cho tam giác ABC nội tiếp trong đường tròn tâm O đường kính AB. Trên cung nhỏ BC của đường tròn (O) lấy điểm D (không trùng với B và C). Gọi H là chân đường vuông góc kẻ từC đến AB (H thuộc AB) và E là giao điểm của CH với AD.
a) Chứng minh rằng tứ giác BDEH là tứ giác nội tiếp.
b) Chứng minh rằng $AB^2 = AE.AD + BH.BA$.
c) Đường thẳng qua E song song với AB, cắt BC tại F. Chứng minh rằng \(\widehat{CDF}=90^\circ\) và đường tròn ngoại tiếp tam giác OBD đi qua trung điểm của CF.
a, ta có \(\widehat{ADB}\)là góc nội tiếp chắn nửa đường tròn => \(\widehat{ADB}=90^0\)hay \(\widehat{EDB}=90^0\)
Xét tứ giác BDEH có :
\(\widehat{EHB}=90^0\left(CH\perp AB\right)\)
\(\widehat{EDB}=90^0\left(cmt\right)\)
=> tugiac BDEH noi tiep
b,
ta có \(\widehat{ADC}=\widehat{ABC}\)( BDEH noitiep cmt)
mà \(\widehat{ABC}+\widehat{CAB}=90^0\)(góc ACB=90 độ, góc nt chắn nửa đg tròn)
\(\widehat{ACH}+\widehat{CAB}=90^0\)( góc AHC=90 độ vì CH vuông với AB)
=> \(\widehat{ABC}=\widehat{ACH}\)
=> \(\widehat{ACH}=\widehat{ADC}\left(=\widehat{ABC}\right)\)hay góc ADC= góc ACE
Xét tam giác ACE và tam giác ADC
\(\widehat{ADC}=\widehat{ACE}\left(cmt\right)\)
góc CAD chung
=> tam giác ACE đồng dạng với tam giác ADC (g-g)
=> \(\frac{AC}{AD}=\frac{AE}{AC}\)
=> \(AC^2=AD.AE\)(1)
Tam giác ABC vuông tại C có AH là đường cao
=> BC2= BH.BA (hethucluong) (2)
(1);(2) => \(AC^2+BC^2=AE.AD+BH.BA\)
mà AC2+ BC2= AB2 ( pytago trong tam giác ABC vuông ở C)
=> \(AB^2=AE.AD+BH.BA\)
(Thừa Thiên Huế - 2020)
Cho đường tròn tâm $O$ đường kính $AB$. Trên đường tròn $(O)$ lấy điểm $C$ không trùng $B$ sao cho $AC > BC$. Các tiếp tuyến của đường tròn $(O)$ tại $A$ và tại $C$ cắt nhau tại $D$. Gọi $H$ là hình chiếu vuông góc của $C$ trên $AB$, $E$ là giao điểm của hai đường thẳng $OD$ và $AC$.
a. Chứng minh $OECH$ là tứ giác nội tiếp.
b. Gọi $F$ là giao điểm của hai đường thẳng $CD$ và $AB$. Chứng minh $2\widehat{BCF} + \widehat{CFB} = 90^{\circ}$.
c. Gọi $M$ là giao điểm của hai đường thẳng $BD$ và $CH$. Chứng minh hai đường thẳng $EM$ và $AB$ song song với nhau.
DC = DA
OA = OC
Do đó OD là trung trực của đoạn thẳng AC : suy ra OD vuông góc với AC
Tứ giác OECH có góc CEO + góc CHO = 180 độ
Suy ra tứ giác OECH là tứ giác nội tiếp
Cho tứ giác ABCD nội tiếp trên đường tròn tâm O, S là điểm chính giữa cungAB, SC, SD cách AB ở E và F a) cm: tứ giác CDFE nội tiếp. b)cm: SO là tia phân giác của góc ASD
a: góc SFE=1/2(sđ cung SB+sđ cung AD)
=1/2(sđ cung SA+sđ cung AD)
=1/2*sđ cung SD
=góc SCD
=>góc DFE+góc DCE=180 độ
=>CDFE nội tiếp
cho đường tròn (o) . Từ điểm M ở bên ngoài (O)vẽ hai tiếp tuyến MA, MB vs (O) (A,B là hai tiếp điểm). Trên cung nhỏ AB lấy một điểm C, gọi D,E,F lần lượt là hình chiếu vuông góc của điểm C lên các đoạn thẳng AB,MA,MB.
A)cm các tứ giác AECD, BFCD là tứ giác nội tiếp. Xác định tâm và bán kính của các đường tròn ngoại tiếp hai tứ giác đó
b) cm CD2= CE.CF
C) Gọi I là giao điểm của AC và DE, K là giao điểm của BC và DF. CM 4 điểm I,C,K,D cùng thuộc một đường tròn
d) CM IK cuông góc vs CD
a. Vì \(CE\perp MA\)tại E (gt) => \(\widehat{AEC}=90^o\)
\(CD\perp AB\)tại D=> \(\widehat{ADC}=90^o\)
Xét tứ giác AECD có: \(\widehat{AEC}+\widehat{ADC}=90^o+90^o=180^o\)=> AECD là tứ giác nội tiếp đt \((G,R=\frac{AC}{2})\)trong đó G là trung điểm của AC (dhnb)
Cmtt ta có: BFCD là tứ giác nội tiếp đt \((H,R=\frac{BC}{2})\)trong đó H là trung điểm của BC
b.
Vì AECD là tứ giác nội tiếp (cmt) => \(\widehat{EAC}=\widehat{EDC}\)(2 góc nội tiếp cùng chắn \(\widebat{EC}\)) (1)
Do MA là tiếp tuyến của đt(O) (gt)=> \(\widehat{EAC}=\frac{1}{2}sđ\widebat{AC}\)(t/c góc tạo bởi tiếp tuyến và dây cung)
Xét đt (O) có: \(\widehat{ABC}=\widehat{DBC}=\frac{1}{2}sđ\widebat{AC}\)(t/c góc nội tiếp) => \(\widehat{EAC}=\widehat{DBC}\)(2)
vì BFCD là tứ giác nội tiếp => \(\widehat{DBC}=\widehat{DFC}\)(2 góc nội tiếp cùng chắn \(\widebat{DC}\)) (3)
Từ (1),(2) và (3) => \(\widehat{EDC}=\widehat{DFC}\)
do AECD là tứ giác nội tiếp (cmt) => \(\widehat{CED}=\widehat{CAD}\)(2 góc nội tiếp cùng chắn \(\widebat{CD}\)) (4)
Vì MB là tiếp tuyến của đt (O) tại B (gt) => \(\widehat{CBF}=\frac{1}{2}sđ\widebat{BC}\)(T/c góc tạo bởi tiếp tuyến và dây cung)
Xét đt (O) có: \(\widehat{BAC}=\widehat{DAC}=\frac{1}{2}sđ\widebat{BC}\)(t/c góc nội tiếp) => \(\widehat{CBF}=\widehat{DAC}\)(5)
lại có: BFCD là tứ giác nội tiếp (cmt) => \(\widehat{CBF}=\widehat{CDF}\)(2 góc nội tiếp cùng chắn \(\widebat{CF}\)) (6)
Từ (4), (5) và (6) => \(\widehat{CED}=\widehat{CDF}\)
Xét \(\Delta ECD\)và \(\Delta DCF\)có:
\(\widehat{CED}=\widehat{CDF}\)(Cmt)
\(\widehat{EDC}=\widehat{DFC}\)(Cmt)
=> \(\Delta ECD~\Delta DCF\)(g.g) => \(\frac{EC}{DC}=\frac{CD}{CF}\Rightarrow CD^2=CE\times CF\)(Đpcm)
c. Vì I là giao điểm của AC và DE (gt) => \(I\in AC\)
K là giao điểm của BC và DF (gt) => \(K\in BC\)
=> \(\widehat{ICK}=\widehat{ACB}\)
Vì \(\widehat{EDC}=\widehat{ABC}\left(cmt\right)\Rightarrow\widehat{IDC}=\widehat{ABC}\left(do\overline{E,I,D}\Rightarrow\widehat{EDC}=\widehat{IDC}\right)\)
\(\widehat{CDF}=\widehat{BAC}\left(cmt\right)\Rightarrow\widehat{CDK}=\widehat{BAC}\left(do\overline{F,K,D}\Rightarrow\widehat{CDF}=\widehat{CDK}\right)\)
Xét tứ giác ICKD có : \(\widehat{ICK}+\widehat{IDK}=\widehat{ICK}+\widehat{IDC}+\widehat{CDK}=\widehat{ACB}+\widehat{ABC}+\widehat{BAC}=180^o\)
(Áp dụng định lý tổng 3 góc trong \(\Delta ABC\)ta có: \(\widehat{ACB}+\widehat{ABC}+\widehat{BAC}=180^o\))
=> Tứ giác ICKD là tứ giác nội tiếp (dhnb) => 4 điểm I,C,K,D cùng thuộc 1 đường tròn (đpcm)
d. Vì ICKD là tứ giác nội tiếp (cmt) => \(\widehat{CIK}=\widehat{CDK}\)(2 góc nội tiếp cùng chắn \(\widebat{CK}\))
Lại có: \(\widehat{CDK}=\widehat{BAC}\)(Cmt) => \(\widehat{CIK}=\widehat{BAC}\)mà 2 góc này ở vị tri đồng vị => IK // AB (Dhnb)
Do \(CD\perp AB\left(gt\right)\)=> \(IK\perp CD\)(Quan hệ tính vuông góc và tính song song của 3 đt)
cho đường tròn tâm (O) , có đường kính AB = 2R , lấy 1 điểm C ( C thuộc đường tròn ) sao cho AC = R và lấy điểm D bất kì trên cung nhỏ BC ( D không trùng điểm B và C ) . Gọi E là giao điểm của AD và BC . đường thẳng đi qua E vuông góc với AB tại H cắt AC tại F . M là trung điêm của EF
a/ CM : HA.HB = HE.HF
b/ CM : CM là tiếp tuyến của đường tròn tâm (O)
c/ Xác định vị trí của D để chu vi của tứ giác ABCD lớn nhất
1. Cho (O). Từ M bên ngoài đường tròn vẽ 2 tiếp tuyến MA, MB với (O) (A, B là tiếp điểm). Trên cung nhỏ AB lấy điểm C, gọi D, E, F lần lượt là hình chiếu vuông góc của điểm C lên AB, MA, MB.
a. CM: tứ giác AECD, BFCD là tứ giác nội tiếp. Xác định tâm và bán kính của các đường tròn ngoại tiếp 2 tứ giác.
b. CM: CD2 = CE.CF
c. Gọi I là giao điểm AC và DE, K là giao điểm BC và DF. CM: 4 diểm I, C, K, D cùng thuộc một đường tròn
d. CM: IK \(⊥\) CD
Cho điểm A nằm ngoài đường tròn (O;R). Vẽ các tiếp tuyến AB, AC với đường tròn (O) tại B và C.
a) CM: tứ giác ABOC nội tiếp được đường tròn
b) Vẽ cát tuyến ADE với đường tròn (O), cát tuyến ADE không qua tâm O; D nằm giữa A và E ). CM: AB^2=AD.AE=OA^2-R^2
c) Gọi H là giao điểm của BC và OA. Cm: tứ giác HDEO nội tiếp
Cho \(\Delta ABC\) có ba góc nhọn nội tiếp đường tròn (O;R), AD là đường cao của \(\Delta ABC\) và AM là đường kính của đường tròn tâm O, gọi E là hình chiếu của B trên AM.
a) CM: \(\widehat{ACM}=90^o\) và \(\widehat{BAD}=\widehat{MAC}\)
b) CM: Tứ giác ABDE nội tiếp
c) CM: DE//BC
a: góc ACM=1/2*sđ cung AM=90 độ
góc BAD+góc ABD=90 độ
góc MAC+góc AMC=90 độ
mà góc ABD=góc AMC
nên góc BAD=góc MAC
b: góc AEB=góc ADB=90 độ
=>AEDB nội tiếp