Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thủy Thủ Mặt Trăng
Xem chi tiết
Huyền Anh
21 tháng 9 2017 lúc 12:07

mk nghĩ là a>b

Thắng  Hoàng
16 tháng 11 2017 lúc 11:03

a>b 100% đúng^_^

chu phương anh
16 tháng 11 2017 lúc 11:08

khó quá

le bac hai my
Xem chi tiết
THANH THẢO CUTE
31 tháng 8 2017 lúc 14:18

A<B đó 

đảm bao 100% luôn

le bac hai my
31 tháng 8 2017 lúc 14:23

bạn ghi cách giải ra giúp mình với

Ánh
31 tháng 8 2017 lúc 15:49

A<B đó đúng 100%

mylu
Xem chi tiết
VuongTung10x
Xem chi tiết
Huỳnh Quang Sang
27 tháng 9 2019 lúc 17:13

\(A=2^0+2^1+2^2+2^3+...+2^{2010}\)

\(A=1+2+2^2+2^3+...+2^{2010}\)

\(2A=2+2^2+2^3+...+2^{2011}\)

\(2A-A=\left[2+2^2+2^3+...+2^{2011}\right]-\left[1+2+2^2+2^3+...+2^{2010}\right]\)

\(A=2^{2011}-1\)

Mà \(B=2^{2011}-1\)

=> A = B

Hoàng Thanh Huyền
27 tháng 9 2019 lúc 17:18

Ta có: A=\(2^0+2^1+2^2+2^3+...+2^{2010}\)

          2A=\(2^1+2^2+2^3+2^4+...+2^{2011}\)

     2A-A hay A=\(2^{2011}-2^0\)

                       =\(2^{2011}-1\)

Vì \(2^{2011}-1=2^{2011}-1\)

\(\Rightarrow\)A=B

Hok tốt nha!!!

Phạm Việt Hòa
18 tháng 1 2023 lúc 16:54

`A``=``2^0``+`2^1``+``2^2``+`2^3``+`...`+``2^(2010)`

`2A=2^1+2^2+2^3+2^4+...+2^(2011)`

`2A-A=(2^1+2^2+2^3+2^4+...+2^(2011))-(2^0+2^1+2^2+2^3+...+2^(2010)`

`A=2^(2011)-1`

`A=B`

Nanah Quyen
Xem chi tiết
Nguyễn Việt Dũng
Xem chi tiết
zZz Hoàng Vân zZz
Xem chi tiết
Hoàng Thị Vân
Xem chi tiết
Nguyễn Anh Chiến 2k8
Xem chi tiết
Xyz OLM
24 tháng 9 2020 lúc 19:51

Ta có : \(\frac{2^9}{3^{2010}}:\frac{3^9}{2^{2010}}=\frac{2^{2019}}{3^{2019}}=\left(\frac{2}{3}\right)^{2019}< 1^{2019}=1\)

Vì \(\frac{2^9}{3^{2010}}:\frac{3^9}{2^{2010}}< 1\)

=> \(\frac{2^9}{3^{2010}}< \frac{3^9}{2^{2010}}\)

Khách vãng lai đã xóa
Bellion
24 tháng 9 2020 lúc 20:01

       Bài làm :

Cách 1:

Ta có :

 \(\frac{2^9}{3^{2010}}\div\frac{3^9}{2^{2010}}=\frac{2^9.2^{2010}}{3^{2010}.3^9}=\frac{2^{2019}}{3^{2019}}=\left(\frac{2}{3}\right)^{2019}< 1\)

 \(\Rightarrow\frac{2^9}{3^{2010}}< \frac{3^9}{2^{2010}}\)

Cách 2 :

Nhận thấy :

29 < 3932010 > 22010

\(\Rightarrow\frac{2^9}{3^{2010}}< \frac{3^9}{2^{2010}}\)

Khách vãng lai đã xóa