Cho hình 5.31, trong đó giả sử O'A < OA. Ta có: OA – O'A < OO' < OA + O'A. Hãy vẽ hai đường tròn (O; OA) và (O' O'A) và cho biết hai đường tròn này có mấy điểm chung?
Cho hai đường tròn (O) và (O') cắt nhau tại A và B, trong đó OA là tiếp tuyến của đường tròn (O'). Tính độ dài dây cung AB biết OA = 20 cm và O'A = 15 cm
Gọi I là trung điểm AB. Chú ý 1 A I 2 + 1 O A 2 + 1 O ' A 2
Ta tính được AB=24cm
Cho hai đường tròn (O) và (O') cắt nhau tại A và B như hình 77. Biết OA = 15cm, O'A = 13 cm, AB = 24cm. Tính độ dài OO' ?
Cho hai đường tròn tâm O và O' tiếp xúc ngoài nhau tại A. Kẻ tiếp tuyến chung ngoài của hai đường tròn (B, C là tiếp điểm; \(B\in\left(O\right);C\in\left(O'\right)\)). Tiếp tuyến chung của hai đườn tròn tại A cắt BC tại M. AB cắt OM tại N, AC cắt O'M tại P. Chứng minh:
a, M là trung điểm BC
b, tứ giác MNAP là hình chữ nhật
c, MN . MO = MP . MO'
d, Cho OA = 16cm, O'A = 9cm. Tính BC
e, Giả sử BC cắt OO' tại E. Cho OA = 16cm, O'A = 9cm. Tính chu vi tam giác OCE
f, Đường thẳng OO' cắt đường tròn (O) và (O') lần lượt tại D, F ( \(D\ne A;F\ne A\)). DB cắt FC tại K. Chứng minh 3 điểm A, M, K thẳng hàng.
Mừng quá. Xong hết rồi. Hơn nửa tiếng bây giờ cũng được đền đáp =))
a) MB = MC (=MA) (giao điểm 2 tiếp tuyến cách đều tiếp điểm)
b) MA = MB = MC => T/g ABC vuông tại A => ^A = 90
T/g OAB cân tại O, có OM là đ/phân giác nên OM cũng là đ cao hay ^ANM = 90
Tương tự, ^APM = 90
=> đpcm
c) MO'/MO = O'C/BM (CMO' ~ BOM) = O'C/CM = CP/MP (CMO' ~ PMC) = MN/MP (PMC = NBM góc vuông - cạnh huyền - góc nhọn so le trong)
=> đpcm
d) Trong t/g vuông OMO' có MA là đường cao, OM^2 = OA.OO' <=> OM = 20 => BM = 12 (Pytago) => BC = 24
e) Dùng ta lét tìm ra OE, EC, còn OC tìm theo pytago trong t/g vuông OBC
f) ABKC là hình chữ nhật => AK cắt BC tại trung điểm M => đpcm
cho đường thẳng OO' và điểm A nằm giữa 2 điểm O và O' vẽ đường tròn tâm O bán kính OA và tâm O' bán kính O'A qua A vẽ đường thẳng cắt đường tròn O tại B và O' tại C.
a,CMR: O và ' tiếp xúc nhau
b, vẽ đường kính BD của đường tròn O và CE của O'. CMR: D,A,E thange hảng
cho đường thẳng OO' và điểm A nằm giữa 2 điểm O và O' vẽ đường tròn tâm O bán kính OA và tâm O' bán kính O'A qua A vẽ đường thẳng cắt đường tròn O tại B và O' tại C. CMR: O và ' tiếp xúc nhau
Cho hai đường tròn (O; 2cm) và (O'; 3cm). OO' = 6cm
a) Hai đường tròn (O), (O') có vị trí tương đối như thế nào đối với nhau ?
b) Vẽ đường tròn (O'; 1cm) rồi kẻ tiếp tuyến OA với đường tròn đó (A là tiếp điểm). Tia O'A cắt đường tròn (O';3cm) ở B. Kẻ bán kính OC của đường tròn (O) song song với O'B, B và C thuộc cùng một nửa mặt phẳng có bờ OO'. Chứng minh rằng BC là tiếp tuyến chung của hai đường tròn (O; 2cm) và (O'; 3cm)
c) Tính độ dài BC
d) Gọi I là giao điểm của BC và OO'. Tính độ dài IO ?
Bạn nào giúp mình bài này với =))
1. Cho đường tròn (O;R) và (O' ; R') tiếp xúc ngoài tại M ( R > R' ) .Vẽ các đường kính MOA và MO'B . Gọi H là trung điểm của AB , vẽ dây CD của đương tròn (O) vuông góc với AB tại H.
a) Tứ giác ACBD là hình gì ?
b) Gọi I là giao điểm của DB với đường tròn (O') . Chứng minh CM vuông góc với DB . Suy ra 3 điểm C, M, I thẳng hàng
c) Chứng minh HI là tiếp tuyến của đường trong ( O')
2. Cho tam giác OAO' vuông tại A ( O'A < OA ) . Vẽ hai đường tròn ( O; OA ) và (O' ; O'A ).
a) Chứng minh 2 đường trong (O) và (O') cắt nhau
b) Gọi B là giao điểm ( khác A ) của 2 đường tròn ( O ) và (O') . Chứng minh đường thẳng OB là tiếp tuyến của đường tròn (O')
c) Gọi I là trung điểm của OO' và C là điểm đối xứng của A qua I . Chứng minh tứ giác OO'BC là hình thang cân .
Cho tam giác OAO' vuông cân tại A. Vẽ hai đường tròn (O;OA) và (O';O'A) cắt nhau tại điểm thứ 2 là I.
a) AOIO' là hình gì? vì sao?
b) tính số đo cung AI của mỗi đường tròn.
c) có nhận xét gì về các cung lớn và nhỏ AI của 2 đường tròn trên.
a, OA = OI = O'A = AI
O'AO = 90
=> AOIO' là hình vuông
b, cung AI = 90 độ ( cả 2 cái )
c, Chúng = nhau
xin đại ca kí chữ kí cho em ở chỗ li-ke cho em nha
xin chân thành cảm ơn đại ca
Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A, Kẻ tiếp tuyến chung ngoài BC, B ϵ (O), C ϵ (O'). Tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC ở I.
Tính độ dài BC, biết OA = 9cm, O'A = 4cm.
ΔOIO' vuông tại A có IA là đường cao nên theo hệ thức giữa cạnh và đường cao ta có:
IA2 = AO.AO' = 9.4 = 36
=> IA = 6 (cm)
Vậy BC = 2.IA = 2.6 = 12 (cm)
Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC, B ∈ (O),C ∈ (O'). Tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC ở I
c) Tính độ dài BC, biết OA = 9cm, O'A = 4 cm
c) Xét tam giác OIO' vuông tại I, IA là đường cao có:
IA 2 = O'A.OA = 4.9 = 36 ⇒ IA = 6 cm
Lại có: BC = 2 AI ⇒ BC = 12 (cm)
Cho tam giác vuông OAO' vuông tại A có OA =6cm, O'A =8cm. Chứng minh đường tròng (O,5cm) và đường tròn (O', \(\sqrt{65}\)cm) cắt nhau tại hai điểm M và N. Tính độ dài MN