Cho điểm O và đường thẳng a thỏa mãn khoảng cách từ O đến đường thẳng a bằng 4 cm. Xác định vị trí tương đối của đường thẳng a và các đường tròn (O; 3 cm), (O; 4 cm), (O; 5 cm).
Cho đường tròn đường kính 10 cm, một đường thẳng d cách tâm O một khoảng bằng 3 cm.
1. Xác định vị trí tương đối của đường thẳng d và đường tròn (O).
2. Đường thẳng d cắt đường tròn (O) tại điểm A và B. Tính độ dài dây AB.
3. Kẻ đường kính AC của đường tròn (O). Tính độ dài BC và số đo góc CAB (làm tròn đến độ).
4. Tiếp tuyến của đường tròn (O) tại C cắt tia AB tại M. Tính độ dài BM.
1.Vì đường kính của (O) là 10cm
\(\Rightarrow\) Bán kính của (O) là \(R=\frac{10}{2}=5\)
\(\Rightarrow d\left(O,d\right)=3< R=5\)
\(\Rightarrow d\left(O\right)\)cắt nhau tại 2 điểm phân biệt
2 . Kẻ \(OI\perp AB\Rightarrow I\) là trung điểm AB
Vì \(OI\perp AB\Rightarrow OI=3\Rightarrow AI^2=OA^2-0I^2=5^2-3^2=16\)
\(\Rightarrow AI=4\Rightarrow AB=2AI=8\) vì I là trung điểm AB
3.Vì O, I là trung điểm AC,AB
=> OI là đường trung bình \(\Delta ABC\Rightarrow BC=2OI=6\)
4 . Vì AC là đường kính của (O)
\(\Rightarrow CB\perp AB\Rightarrow CB\perp AM\)
Mà \(CA\perp CM\Rightarrow CB^2=AB.BM\)
\(\Rightarrow BM=\frac{BC^2}{AB}=\frac{6^2}{8}=\frac{9}{2}\)
Cho đường tròn đường kính 10 cm, một đường thẳng d cách tâm O một khoảng bằng 3 cm.
a, Xác định vị trí tương đối của đường thẳng d và đường tròn (O)
b. Đường thẳng d cắt đường tròn (O) tại điểm A và B. Tính độ dài dây AB.
c Kẻ đường kính AC của đường tròn (O). Tính độ dài BC và số đo (làm tròn đến độ).
d Tiếp tuyến của đường tròn (O) tại C cắt tia AB tại M. Tính độ dài BM.
Giúp mình với !!!
Biết đường kính của một đường tròn là 10cm. Biết khoảng cách từ tâm O của đường tròn đến đường thẳng a là 5 cm. Vị trí tương đối của đường thẳng và đường tròn là:
A. Cắt nhau
B. Tiếp xúc
C. Không giao nhau
D. Không xác định được
Phần tự luận
Nội dung câu hỏi 1
Cho đường tròn đường kính 10 cm, một đường thẳng d cách tâm O một khoảng bằng 3 cm
1) Xác định vị trí tương đối của (O) và (d)
Gọi O là tâm đường tròn, H là chân đường vuông góc hạ từ O đến đường thẳng d
⇒ Độ dài OH là khoảng cách từ O đến đường thẳng d
Ta có: OH = 3cm < R = 5 cm ⇒ d cắt (O) tại 2 điểm phân biệt
Cho đường tròn (O;R) và đường thẳng d cố định, sao cho khoảng cách từ tâm O đến đường thẳng d lớn hơn bán kìn R của đường tròn O. Trên đường thẳng d lấy điểm M bất kỳ. Từ M kẻ MC là tiếp tuyến của đường tròn (O;R), C là tiếp điểm. Vẽ CH vuông góc với OM tại H, cắt (O;R) tại B.
a) Cho biết vị trí tương đối của đường tròn (O;R) và đường thẳng d? Giải thích vì sao?
b) Chứng minh: MB là tiếp tuyến của (O;R)
c) Chứng minh rằng: Khi điểm M di chuyển trên đường thẳng d thì đoạn thẳng BC luôn đi qua 1 điểm cố định.
Biết đường kính của một đường tròn là 10cm. Biết khoảng cách từ tâm O của đường tròn đến đường thẳng a là 5 cm. Vị trí tương đối của đường thẳng và đường tròn là:
ta có bán kính của đường tròn là 10cm :2 =5 cm
do khoảng cách từ tâm đường tròn đến đường thẳng a bằng đúng bán kính của đường tròn nên
Đường tròn tiếp xúc với đường thẳng a
Cho đường tròn (O) đường kính 10cm và đường thẳng d. Gọi H là hình chiếu vuông góc của O trên đường thẳng d. Biết OH = 8cm. Xác định vị trí tương đối của đường thẳng d và đường tròn (O).
A. Đường thẳng d và đường tròn (O) tiếp xúc nhau.
B. Đường thẳng d và đường tròn (O) cắt nhau.
C. Đường thẳng d và đường tròn (O) có điểm chung.
D. Đường thẳng d và đường tròn(O) không có điểm chung.
a) Kẻ OH ⊥⊥ d
=> OH là khoảng cách từ d tới tâm đường tròn (O)
mà OH < R (3 < 5)
=> Đường thẳng d cắt đường tròn (O)
b) Xét ΔΔOAH vuông tại H có:
OH2+AH2=OA2OH2+AH2=OA2 (ĐL Pi-ta-go)
=> AH=OA2−OH2−−−−−−−−−−√=52−32−−−−−−√=4(cm)AH=OA2−OH2=52−32=4(cm)
Xét (O): AB là dây, OH ⊥⊥ AB
=> H trung điểm AB (quan hệ ⊥⊥ giữa đường kính và dây cung)
=> AB = 2AH = 8(cm)
c) Xét ΔΔABC có: O, H trung điểm AC, AB
=> OH là đường trung bình ΔΔABC
=> OH // BC mà OH ⊥⊥ AH
=> BC ⊥⊥ AH => ΔΔABC vuông tại B
=> AB2 + BC2 = AC2
=> BC=102−82−−−−−−−√=6(cm)BC=102−82=6(cm)
Xét ΔΔABC vuông tại B
có: sinC=ABAC=810=45⇒Cˆ=53o7′sinC=ABAC=810=45⇒C^=53o7′
=> Aˆ=36o52′A^=36o52′
d) Xét ΔΔACM vuông tại C: CB ⊥⊥ AM
có: AC2=AB⋅AMAC2=AB⋅AM (HTL tam giác vuông)
=> AM=AC2AB=1028=12,5(cm)AM=AC2AB=1028=12,5(cm)
lại có: AB + BM = AM ; AB = 8(cm)
=> BM = 4,5(cm)
Cho đường thẳng AB = 2a có trung điểm O. Trên cùng nửa mặt phẳng bờ AB dựng nửa đường tròn (O) đường kính AB và nửa đường tròn (O') đường kính AO. Trên (O') lấy điểm M ( khác A và O ), tia OM cắt đường tròn (O) tại C, gọi D là giao điểm thứ hai của CA với (O')
1) CMR tam giác ADM cân.
2) Tiếp tuyến tại C của (O) cắt tia OD tại E. Xác định vị trí tương đối của đường thẳng EA đối với đường tròn (O) và (O').
3) Đường thẳng AM cắt OD tại H, đường tròn ngoại tiếp tam giác COH cắt đường tròn (O) tại điểm thứ hai là N. CMR 3 điểm A,M,N thẳng hàng.
4) Tại vị trí điểm M sao cho ME // AB . Hãy tính độ dài đoạn thẳng OM theo a.
1) \(\Delta AOC\)cân tại O có OD là đường cao nên cũng là phân giác của \(\widehat{AOC}\), do đó \(\widehat{AOD}=\widehat{COD}\Rightarrow\widebat{AD}=\widebat{DM}\)
nên DA = DM. Vậy tam giác AMD cân tại D (đpcm)
2) Dễ thấy \(\Delta OEA=\Delta OEC\left(c-g-c\right)\), từ đó suy ra được \(\widehat{OAE}=\widehat{OCE}=90^0\)
Do đó \(AE\perp AB\). Vậy AE là tiếp tuyến chung của \(\left(O\right)\)và \(\left(O'\right)\)
3) Giả sử AM cắt \(\left(O\right)\)tại \(N'\). Ta có \(\Delta OAN'\)cân tại O và \(OM\perp AN'\)nên OM là đường trung trực của AN'. Từ đó ta được CA = CN'
Ta có \(\widehat{CN'A}=\widehat{CAM}\) mà \(\widehat{CAM}=\widehat{DOM}\), do đó \(\widehat{CN'H}=\widehat{COH}\). Suy ra bốn điểm C, N', O, H thuộc một đường tròn. Suy ra N' thuộc đường tròn ngoại tiếp \(\Delta CHO\). Do vậy \(N'\equiv N\)
Vậy ba điểm A, M, N thẳng hàng (đpcm)
4) Vì ME song song với AB và \(AB\perp AE\)nên \(ME\perp AE\)
Ta có hai tam giác MAO, EMA đồng dạng nên \(\frac{MO}{EA}=\frac{MA}{EM}=\frac{AO}{MA}\Rightarrow MA^2=AO.EM\)
Dễ thấy \(\Delta MEO\) cân tại M nên ME MO. = Thay vào hệ thức trên ta được\(MA^2=AO.MO\)
Đặt MO = x > 0 \(\Rightarrow MA^2=OA^2-MO^2=a^2-x^2\)
Từ \(MA^2=AO.MO\) suy ra \(a^2-x^2=ax\Leftrightarrow x^2+ax-a^2=0\)
Từ đó tìm được \(x=\frac{\left(\sqrt{5}-1\right)a}{2}\)
Vậy \(OM=\frac{\left(\sqrt{5}-1\right)a}{2}\)
Bài 1: Cho dường tròn tâm O đường kính AB; M là một điểm di động trên đường tròn( m khác A và B). Dựng đường tròn tâm M tiếp xúc với Ab tại H. Từ A và B kể tiếp tuyến BD và AC đến đường tròn tâm M.
a)Xác định vị trí tương đối của đường thẳng CD và đường tròn tâm O.
b) Tìm vị trí của M trên (O) để AC.BD đạt ghía trị lớn nhất.
1 .
Cho đường tròn (O;13 cm) , dây AB=24cm
a) Tính khoảng cách từ tâm O đến dây AB?
b) Gọi M là điểm thuộc dây AB. Qua M, vẽ dây CD vuông góc với dây AB tại điểm M. Xác định vị trí điểm M trên dây AB để AB=CD
2 .
Cho đường tròn (O) và 2 điểm A,B phân biệt thuộc (O) sao cho đường thẳng AB không đi qua tâm O trên tia đối của tia AB lấy điểm M khác điểm A, từ điểm M kẻ 2 tiếp tuyến phân biệt M E ,MF với đường tròn .GỌI H là trung điểm của dây cung AB , các điểm K và I theo thứ tự là giao điểm của đường thẳng EF với các đường thẳng OM
1 cm m,o,h,e,f cùng nằm trên 1 đường tròn
2 oh .oi=ok.om
3Cm IA,IB là các tiếp tuyến của đường tròn