Bài 5. Cho hàm số y = f(x) có đạo hàm f′(x). Đồ thị của hàm số y = f′(x) như hình vẽ
Cho hàm sốy=f(x) có đạo hàm f'(x) trên tập số thực ℝ và đồ thị của hàm số y=f(x) như hình vẽ. Khi đó, đồ thị của hàm số y = ( f ( x ) ) 2 có
A. 2 điểm cực đại, 2 điểm cực tiểu
B. 2 điểm cực tiểu, 3 điểm cực đại
C. 1 điểm cực đại, 3 điểm cực tiểu
D. 2 điểm cực đại, 3 điểm cực tiểu
Từ đồ thị hàm số f(x) ta thấy đồ thị cắt trục hoành tại ba điểm phân biệt có hoành độ x=0;x=1;x=3
Lại thấy đồ thị hàm số y=f(x) có ba điểm cực trị nên
Hàm số y = f x 2 có đạo hàm y'=2f(x).f '(x)
Xét phương trình
Ta có BXD của y' như sau
Nhận thấy hàm số y = f x 2 có y' đổi dấu từ âm sang dương tại ba điểm x=0;x=1;x=3 nên hàm số có ba điểm cực tiểu. Và y' đổi dấu từ dương sang âm tại hai điểm x = x 1 ; x = x 2 nên hàm số có hai điểm cực đại.
Chọn đáp án D.
Cho hàm số y = f(x) có đạo hàm f'(x) trên khoảng ( - ∞ ; + ∞ ) . Đồ thị hàm số y = f(x) như hình vẽ
Đồ thị của hàm số y = ( f ( x ) ) 2 có bao nhiêu điểm cực đại, cực tiểu?
A. 2 điểm cực đại, 3 điểm cực tiểu.
B. 1 điểm cực đại, 3 điểm cực tiểu.
C. 2 điểm cực đại, 2 điểm cực tiểu.
A. 3 điểm cực đại, 2 điểm cực tiểu.
Cho hàm số y =f(x) có đạo hàm f '(x) trên tập số thực ℝ và đồ thị của hàm số y = f(x) như hình vẽ. Khi đó, đồ thị của hàm số y = f x 2 có
A. 2 điểm cực đại, 2 điểm cực tiểu
B. 2 điểm cực tiểu, 3 điểm cực đại
C. 1 điểm cực đại, 3 điểm cực tiểu
D. 2 điểm cực đại, 3 điểm cực tiểu
Cho hàm số y =f(x) có đạo hàm f’(x) trên khoảng (-∞;+∞). Đồ thị của hàm số y =f(x) như hình vẽ. Đồ thị của hàm số y = f x 2 có bao nhiêu điểm cực đại, điểm cực tiểu?
A. 1 điểm cực đại, 3 điểm cực tiểu.
B. 2 điểm cực đại, 3 điểm cực tiểu.
C. 2 điểm cực đại, 2 điểm cực tiểu.
D. 2 điểm cực tiểu, 3 điểm cực đại.
Cho hàm số y=f(x) liên tục trên K có đạo hàm f'(x) Đồ thị của hàm số f'(x) như hình vẽ bên.
Tìm số điểm cực trị của đồ thị hàm số f(x)?
A. 3
B. 1
C. 0
D. 2
Đáp án B
f'(x) đổi dấu 1 lần, suy ra đồ thị hàm số f(x) có 1 điểm cực trị.
Cho đồ thị hàm số y = f(x) có đồ thị đạo hàm như hình vẽ. Số điểm cực trị của đồ thị hàm số y = f ( x 3 ) là:
A. 0
B. 1
C. 2
D. 3
Cho hàm số y=f(x) có đạo hàm trên R. Đồ thị hàm số y=f’(x) như hình vẽ bên dưới. Hỏi đồ thị hàm số g(x)=-x-f(x) đạt cực đại tại?
A. x = -1
B. x = 0
C. x = 1
D. x = 2
Cho hàm số y=f(x) có đạo hàm trên R. Đồ thị hàm số y=f '(x) như hình vẽ bên dưới. Hỏi đồ thị hàm số g(x)=f(x)-x có bao nhiêu điểm cực trị?
A. 1
B. 2
C. 3
D. 4
Cho hàm số y= f(x) có đạo hàm và đồ thị hàm số y= f’(x) như hình vẽ.
Số điểm cực tiểu của hàm số là
A.1
B . 2
C. 3
D. 4
Chọn B
Ta có: .
Khi đó .
Vẽ đồ thị hàm số trên mặt phẳng toạ độ đã có đồ thị y= f’(x).
Dựa vào hình vẽ trên ta thấy phương trình có ba nghiệm đơn:
x1< x2< x3
Ta lập được bẳng xét dấu của g’(x) :
Dựa vào bảng xét dấu ta thấy dấu của thay đổi từ sang hai lần. Vậy có hai điểm cực tiểu.
Cho hàm số y=f(x) có đạo hàm liên tục trên R. Đồ thị hàm f(x) như hình vẽ.
Số đường tiệm cận đứng của đồ thị hàm số y = x 2 - 1 f 2 ( x ) - 4 f ( x ) là
A. 4
B. 1
C. 2
D. 3