\(A=\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right)\left(\frac{x-1}{\sqrt{2}}\right)^2\) \(ĐKXĐ:0< x< 1\)
rút gọn A
\(\left(\frac{1}{\sqrt{x}-\sqrt{x-1}}-\frac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\left(\frac{2}{\sqrt{2}-\sqrt{x}}-\frac{\sqrt{x}+\sqrt{2}}{\sqrt{2x-x}}\right)\)
a. ĐKXĐ của x
b. Rút gọn
Cho \(P=\left(\frac{x\sqrt{x}}{\sqrt{x}+1}+\frac{x^2}{x\sqrt{x}+x}\right)\left(2-\frac{1}{\sqrt{x}}\right)\)
a)Tìm đkxđ và rút gọn
b)Tìm x để P = 0
a, \(P=\left(\frac{x\sqrt{x}}{\sqrt{x}+1}+\frac{x^2}{x\sqrt{x}+1}\right)\left(2-\frac{1}{\sqrt{x}}\right)\)ĐK : \(x\ge0;\sqrt{x}+1>0\)
\(=\left(\frac{x\sqrt{x}\left(x-\sqrt{x}+1\right)+x^2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right)\left(\frac{2\sqrt{x}-1}{\sqrt{x}}\right)\)
\(=\left(\frac{x^2\sqrt{x}-x^2+x\sqrt{x}+x^2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right)\left(\frac{2\sqrt{x}-1}{\sqrt{x}}\right)\)
\(=\left(\frac{x\sqrt{x}\left(x+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right)\left(\frac{2\sqrt{x}-1}{\sqrt{x}}\right)\)
\(=\frac{x\left(x+1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
b, \(P=0\Rightarrow\frac{x\left(x+1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=0\Leftrightarrow x\left(x+1\right)\left(2\sqrt{x}-1\right)=0\)
\(\Leftrightarrow x=0;x=-1;x=\frac{1}{4}\)Kết hợp với đk vậy \(x=0;x=\frac{1}{4}\)
Rút gọn biểu thức :
a) \(A=\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\) đkxđ : \(x\ge0;x\ne4\)
b) \(B=\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\left(\frac{1}{2\sqrt{x}}-\frac{\sqrt{x}}{2}\right)^2\)
c) \(C=\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x+1}}\right)\div\frac{\sqrt{x}}{x+\sqrt{x}}\) đkxđ : x > 0
A=\(\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)
=\(\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
=\(\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}}{\sqrt{x-2}}\)
Vậy A=\(\frac{\sqrt{x}}{\sqrt{x}-2}\)vs x\(\ge0;x\ne4\)
C=\(\left(\frac{1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\times\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{1+x}{\sqrt{x}}\)
Vậy C=\(\frac{1+x}{\sqrt{x}}\)vs x>0
1/ Rút gọn biểu thức:\(G=\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}}\right)\div\frac{\sqrt{x}+1}{x}\)
2/ Cho biểu thức: \(M=x-\frac{2x-2\sqrt{x}}{\sqrt{x}-1}+\frac{x\sqrt{x}+1}{x-\sqrt{x}+1}+1\)
a. Tìm ĐKXĐ
b. Rút gọn M
c. Tìm giá trị nhỏ nhất của M
3/ Chứng minh: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{a+b}|\)với \(a\ne0,b\ne0,a+b\ne0\)
4/ Biết a,b,c là số dương và ab + bc + ac =1. Hãy tính tổng:
\(M=a\sqrt{\frac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}+b\sqrt{\frac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}+c\sqrt{\frac{\left(1+a^2\right)\left(1+b^2\right)}{1+c^2}}\)
Ai giải giúp mình bài 1 với bài 4 trước đi
Cho M = \(\left(\frac{2}{1-\sqrt{x}}-\frac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2}{x-1}\right)\)
a) tìm đkxđ của M
b) rút gọn M
c) tìm gt nhoe nhất của M
\(ChoQ=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\left(\frac{1-x}{\sqrt{2}}\right)^2\)
a, rút gọn
b, chứng minh nếu 0<x<1 thì Q>0
c, tìm GTLN của Q
\(ChoA=\frac{1}{2\left(1+\sqrt{x}+2\right)}+\frac{1}{2\left(1-\sqrt{x}+2\right)}\)
a, tìm x để a có nghĩa
b, rút gon A
c, tìm X nguyên để A nguyên
\(ChoA=\left(\frac{\sqrt{a}}{\sqrt{a-1}}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2}{a-1}\right)\)
a, Rút gọn A
b, tính A Khi a=3+\(2\sqrt{2}\)
1. B=\(\frac{x}{\left(\sqrt{x}+_{\sqrt{y}}\right)\left(1-\sqrt{y}\right)}-\frac{y}{\left(\sqrt{x}+\sqrt{y}\right)}-\frac{xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\)
a. Tìm ĐKXĐ và Rút gọn
b. Tìm x,y nguyên thỏa mãn B=2
1. Cho A = \(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\) với x > 0 và x khác 1.
a) Rút gọn A.
b) Tìm các giá trị nguyên của x để A có giá trị nguyên.
2. Rút gọn:
a) \(\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(2-\frac{2\sqrt{a}-a}{\sqrt{a}-2}\right)\)với a >= 0 và a khác 4.
b) \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}}\right):\frac{\sqrt{x}+1}{x}\) với a > 0 và x khác 1.
c) \(\left(\frac{1-x\sqrt{x}}{1-x}+\sqrt{x}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\) với x >= 0 và x khác 1.
Cho biểu thức \(P=\left(\frac{\sqrt{x}-2}{\sqrt{x}-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\cdot\frac{\left(1-x\right)^2}{2}\)
a) Tim ĐKXĐ, rút gọn P
b) Tìm x để P< 1/2