1/3 + 1/6 + 1/10 + 1/15 +...+ 1/x.(2x+1) = 1999/2001
Tìm x:
1/3 + 1/6 + 1/10 + 1/15 +...+ 1/x.(2x+1) = 1999/2001
Tìm x thuộc z biết : 1/3 + 1/6 + 1/10 + 1/15 + .....+ 1/x.(2x+1) = 1999/2001
1/3+1/6+1/10+...+1/x*(2x+1)=1999/2001
2/6+2/12+...2/x(x+1)=1999/2001
2[1/2*3+1/3*4+...+1/x(x+1)]=1999/2001
1/2-1/3+1/3-1/4+...+1/x-1/x+1=1999/2001:2
(1/2-1/x+1)+(1/3-1/3)+...+(1/x-1/x)=1999/4002
1/2-1/x+1=1999/4002
1/x+1=1/2-1999/4002
1/x+1=1/2001
=>(x+1)=2001
x=2001-1
x=2000
Vậy x=2000
1/3+1/6+1/10+......+2/x[x+1]=1999/2001
. Tìm x biết :
a) 1/1x2 + 1/2x3 + 1/3x4 + ... + 1/x.(x+1) = 667/668
b) 1/1.4 + 1/4.7 + 1/7.10 + ... + 1/x.(x+3) = 667/2002
c) 1/3 + 1/6 + 1/10 + 1/15 + ... + 1/x.(2x+1) = 1999/2001
lẹ giùm mình T.T mình sắp đi học ròii nên ai nhanh mình tick
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=\frac{667}{668}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{667}{668}\)
\(1-\frac{1}{x+1}=\frac{667}{668}\)
\(\frac{1}{x+1}=1-\frac{667}{668}\)
\(\frac{1}{x+1}=\frac{1}{668}\)
\(\Rightarrow x+1=668\)
x = 667
a) 1/1x2 + 1/2x3 + 1/3x4 + ... + 1/x.(x+1) = 667/668
=>1/1-1/2+1/2-1/3+1/3-1/4+.......+1/x-1/x+1=667/668
=>1/1-1/x+1=667/668
=>1/x+1=1/1-667/668
=>1/x+1=1/668
=>x=667
b) \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x.\left(x+3\right)}=\frac{667}{2002}\)
\(\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{667}{2002}\)
\(\frac{1}{3}.\left(1-\frac{1}{x+3}\right)=\frac{667}{2002}\)
\(1-\frac{1}{x+3}=\frac{2001}{2002}\)
\(\frac{1}{x+3}=\frac{1}{2002}\)
=> x + 3 = 2002
x = 1999
1/3+1/6+1/10+...+2/x(x+1)=1999/2001
tìm x thuộc n biết 1/3+1/6+1/10+...+2/x.(x+1)=1999/2001
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)}=\frac{1999}{2001}\)
\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)
\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1999}{2001}:2=\frac{1999}{4002}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{4002}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{1999}{2001}=\frac{1}{2001}\)
=> x + 1 = 2001
=> x = 2001 - 1
=> x = 2000
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+..+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)
\(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+..+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)
\(\frac{1}{6}+\frac{1}{12}+..+\frac{1}{x\left(x+1\right)}=\frac{1999}{2001}:\frac{1}{2}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{1999}{4002}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{x}-\frac{1}{x+1}=\frac{1999}{4002}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{4002}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{1999}{4002}\)
\(\frac{1}{x+1}=\frac{1}{2001}\)
=> x + 1 = 2001
=> x = 2001 - 1
=> x = 2000
tìm x thuộc N biết 1/3+1/6+1/10+...+2/x.(x+1)=1999/2001
tìm STN x biết rằng : 1/3 + 1/6 + 1/10 + ... + 2/x(x+1) = 1999/2001
(*) <=> 1\6 + 1\12 +.. + 1\x.(x+1) = 2009\(2011.2)
ma
1\2.3 =1\2-1\3
1\3.4=1\3-1\4
...............
1\x(x+1)= 1\x-1\(x+1)
cong tung ve ta dc
Vt= 1\2- 1\(x+1) =2009\(2.2011)
<=> 2011\(2.2011) -2009\(2.2011) =1\(x+1)
<=> 1\2011 =1\(x+1)
=> x=2010
1/3 + 1/6 + 1/10 + ... + 2/x(x+1) = 1999/2001
nhân 1/2 vào 2 vế ta được vế trái là :
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{2}.\frac{1999}{2001}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{2}.\frac{1999}{2001}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1}{2}.\frac{1999}{2001}\)
\(\frac{x-1}{2.\left(x+1\right)}=\frac{1}{2}.\frac{1999}{2001}\)
\(\frac{x-1}{\left(x+1\right)}=\frac{1999}{2001}\)
suy ra : 2001x - 2001 = 1999x + 1999
2x = 1999 + 2001 = 4000
=> x = 2000
Tìm x thuộc N
1\3+1\6+1\10+.....+2\x.(x+1)=1999\2001