Chứng minh: n^2+n+2015 lẻ với mọi n
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 1: Chứng minh rằng: ab-ba chia hết cho9
B2: Cm : N= n^2+n +2015 lẻ với mọi n
ab - ba = 10a + b - 10b - a = 9a -9b = 9(a - b)
Luôn luôn chia hết cho 9
ĐÚng cho mình nha
Chứng minh với mọi số tự nhiên $n$, nếu $n$ lẻ thì $n^3$ lẻ.
Nếu n lẻ thì n3 lẻ
n lẻ <=> n =2k +1 (k ∈ Z)
n^3 =(2k +1)3 =8k3 +3.4k2 +3.2k +1=2( 4k3 +6k2 +3 k) +1
2( 4k3 +6k2 +3 k) chia hết cho 2 => là số chẵn
=>2( 4k3 +6k2 +3 k) +1 là số lẻ => n3 lẻ
Nếu lẻ thì có dạng với .
Do đó .
Suy ra lẻ.
Vậy với mọi số tự nhiên , nếu lẻ thì lẻ.
Đặt n = 2k+1 (k ∈ N)
Khi này: n^3 = (2k+1)^3
= (2k)^3 + 3*(2k)^2*1 + 3*2k*1^2 + 1^3
= 8k^3 + 12k^2 + 6k + 1
= 2 (4k^3 + 6k^2 + 3k) + 1 là số lẻ.
Vậy với mọi số tự nhiên n lẻ thì n^3 lẻ.
Chứng minh với mọi số tự nhiên " n " là: n^2+n+1 là số lẻ
chứng minh rằng: n^3-3n^2-n+3 chia hết cho 48 với mọi số lẻ n
n^2(n-3)-(n-3)=(n-3)(n^2-1)=(n-3)(n-1)(n+1)
Có: (n-1)(n+1) là tích 2 số chắn liên tiếp=> (n-1)(n+1) chia hết cho 8
n lẻ=> n-3 chẵn=> n-3 chia hết cho 2
=> (n-3)(n-1)(n+1) chia hết cho 2*8=16(1)
Mặt khác n^3-3n^2-n+3 = n(n^2-1)-3(n^2-1)=n(n-1)(n+1)-3(n^2-1)
thấy n(n-1)(n+1) là tích 3 stn liên tiếp => n(n-1)(n+1) chia hết cho 3
lại có: 3(n^2-1) chia hết cho 3
=> n^3-3n^2-n+3 chia hết cho 3(2)
(1)(2)=>n^3-3n^2-n+3 chia hết cho 48
n^3-3n^2-n+3=(n^3-n)-3(n^2-1)=n(n^2-1)-3(n^2-1)=(n-3)(n-1)(n+1)
n lẻ nên có dạng n=2k+1 (k \(\in N\)) thay vào trên ta được
(2k-2)2k(2k+2)=8(k-1)k(k+1) chia hết cho 48 nếu (k-10k(k+10 chia hết cho 6
Thật vậy
(k-1)k(K+1) là 3 số liên tiếp nên luôn tồn tại một số chia hết cho 3
(k-1)k(k+1) cũng luôn tồn tại ít nhất một số chia hết cho 2
vậy (k-1)k(k+1) chia hết cho 6 (chứng minh xong)
chứng minh n^2+6n-7 chia hết cho 4 với mọi số n lẻ
Ta có:\(n^2+6n-7=\left(n+7\right)\left(n-1\right)\left\{@\right\}\)
mà n lẻ
=> n có dạng 2k+1
\(@\Leftrightarrow\left(2k+8\right).2k=4k\left(k+4\right)⋮4\left(ĐPCM\right)\)
chứng minh rằng với mọi số tự nhiên n thì (n+2015).(n+2016) chia hết cho 2 ?
TH1 : Xét : n lẻ
Tổng hai số lẻ sẽ là số chẵn nên n lẻ + 2015 ( số lẻ ) sẽ chẵn
Tổng hai số lẻ và số chẵn sẽ là số lẻ nên n + 2016 ( số chẵn ) sẽ lẻ
Mà tích hai số chẵn , lẻ luôn bằng số chẵn nên chia hết cho 2
Vậy : { n + 2015 } . { n + 2016 } chia hết cho 2 ( ĐPCM )
TH2 : Xét : n chẵn
Tổng hai số chẵn , lẻ sẽ là số lẻ nên n + 2015 ( lẻ ) sẽ là số lẻ
Tổng hai số chẵn sẽ là số chẵn sẽ là số chẵn nên n + 2016 ( số chẵn ) sẽ chẵn
Mà tích hai số lẻ , chẵn luôn bằng số chẵn
Vậy : { n + 2015 } . { n + 2016 } chia hết cho 2 ( ĐPCM )
+ Nếu n là lẻ => n + 2015 là chẵn
=> n + 2015 chia hết cho 2
=> (n + 2015)(n + 2016) chia hết cho 2.
+ Nếu n là chẵn => n + 2016 là chẵn
=> n + 2016 chia hết cho 2.
=> (n + 2015)(n + 2016) chia hết cho 2.
Vậy (n + 2015)(n + 2016) luôn chia hết cho 2 với mọi n
Chứng minh rằng với mọi số tự nhiên n thì A=(n+2015).(n+2016) chia hết cho 2
Nếu n lẻ
=> n+2015=chẵn
n+2016=lẻ
=>(n+2015).(n+2016)=chẵn chia hết cho 2 (chẵn .lẻ =chẵn)
Nếu n lẻ
=> n+2015=lẻ
n+2016=chẵn
=>(n+2015).(n+2016)=chẵn chia hết cho 2 (chẵn .lẻ =chẵn)
Vậy với mọi số tự nhiên thì A=(n+2015).(n+2016) chia hết cho 2
Chứng minh rằng số a = n^2+2+1 luôn là lẻ với mọi số tự nhiên n
TH1: n lẻ
=> n2 lẻ
=> n2 + n chẵn
=> n2 + n + 2 chẵn
Mà 1 lẻ
=> n2 + n + 2 + 1 lẻ
TH2: n chẵn
=> n2 chãn
=> n2 + n chẵn
=> n2 + n + 2 chẵn
Mà 1 lẻ
=> n2 + n + 2 + 1 le
KL: n2 + n + 2 + 1 luôn lẻ với mọi số tự nhiên n (Đpcm)
Chứng minh với mọi n lẻ : n2+4n+5 không chia hết cho 8
Đặt n=2k+1 với k thuộc Z
A=(2k+1)^2+4(2k+1)+5=4k^2+12k+10= (2k+3)^2+1
ta biết 1 số bình phương chia cho 8 thì dư 1 hoặc 3(cậu nên chứng minh thêm bài toán phụ này)
khi đó A chia 8 sẽ dư 2 hoăc 4,suy ra đpcm