Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trường tiểu học Yên Trun...
Xem chi tiết
Đinh Tuấn Việt
20 tháng 7 2015 lúc 21:10

\(\frac{a}{b}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\frac{a}{b}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{a}{b}=1-\frac{1}{100}=\frac{99}{100}\)

Do đó a = 99k và b = 100k (k \(\in\) N*)

Còn chứng minh a chia hết cho 151 thì bạn xem lại đề, còn tùy vào k thì a mới chia hết cho 151.

Nguyễn Đình Luật
Xem chi tiết
Thuy Pro
Xem chi tiết
quản thị thùy dương
Xem chi tiết
SAKURA Thủ lĩnh thẻ bài
12 tháng 2 2019 lúc 12:26

MÌNH CHỈ LÀM ĐƯỢC a,b,c,d thôi và e ý 1

Xem chi tiết
Sooya
9 tháng 7 2019 lúc 14:50

\(A=1+5+5^2+5^3+...+5^{99}\)

\(A=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{98}+5^{99}\right)\)

\(A=6+5^2\cdot6+...+5^{98}\cdot6\)

\(A=6\left(1+5^2+...+5^{98}\right)⋮6\)

\(B=1+5+5^2+5^3+...+5^{100}\)

\(B=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{98}+5^{99}\right)+5^{100}\)

\(B=6+6\cdot5^2+...+6\cdot5^{98}+5^{100}\)

\(B=6\left(1+5^2+...+5^{98}\right)+5^{100}\)

a ⋮ c; b không chia hết cho c => a + b  không chia hết cho c

Nguyễn Thị Mỹ Duyên
Xem chi tiết
tuân phạm
Xem chi tiết
Nguyễn Tũn
6 tháng 10 2018 lúc 15:12

Câu 2;3;4 dễ quá... bỏ qua!!

Câu 5;6 khó quá ... khỏi làm!!

dễ quá bỏ qua!!, khó quá khỏi làm!!

cứ tiêu chí mày bạn sẽ vượt qua mọi bài toán... và nhanh chóng đạt 1đ.

Banana Guy
Xem chi tiết
nguyễn tuấn thảo
2 tháng 9 2019 lúc 14:07

\(6+6^2+\cdot\cdot\cdot+6^{10}\)

\(=6\cdot\left(1+6\right)+6^3\cdot\left(1+6\right)+\cdot\cdot\cdot+6^9\cdot\left(1+6\right)\)

\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)

\(=7\cdot\left(6+6^3+\cdot\cdot\cdot+6^9\right)⋮7\)

\(\Rightarrow6+6^2+\cdot\cdot\cdot\cdot+6^{10}⋮7\)

shitbo
2 tháng 9 2019 lúc 16:21

\(5^1-5^9+5^8=5\left(1-5^8+5^7\right)⋮7\Leftrightarrow5^8-5^7-1⋮7\)

\(5\equiv-2\left(mod7\right)\Rightarrow5^3\equiv-1\left(mod7\right)\Rightarrow5^8\equiv4\left(mod7\right);5^7\equiv-2\left(mod7\right)\)

\(5^8-5^7-1\equiv5\left(mod7\right):v\)

Nguyễn Tuấn Thảo
3 tháng 9 2019 lúc 14:59

\(6+6^2+\cdot\cdot\cdot+6^{10}\)

\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)

\(=7\cdot\left(6+\cdot\cdot\cdot+6^9\right)\)

\(⋮7\)

Nguyễn Tiến Phát
Xem chi tiết