1. Tính:
a)\(81^3:3^5\)
b)\(16\cdot2^4\cdot\frac{1}{32}\cdot2^3\)
2. Tìm x:
a) \(\left(x-1\right)^5=32\)
b) \(\left(2^3:4\right)\cdot2^{\left(x+1\right)}=64\)
Bài 1: Tính
a. \(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)+\left(1+\frac{1}{4\cdot6}\right).....\left(1+\frac{1}{99\cdot101}\right)\)
b. \(\left[\sqrt{0,64}+\sqrt{0,0001}-\sqrt{\left(-0,5\right)^2}\right]\div\left[3\cdot\sqrt{\left(0,04\right)^2}-\sqrt{\left(-2\right)^4}\right]\)
c. \(\frac{5.4^{15}\cdot9^9-4.3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}-\frac{2^{19}\cdot6^{15}-7\cdot6^{10}\cdot2^{20}\cdot3^6}{9\cdot6^{19}\cdot2^9-4\cdot3^{17}\cdot2^{26}}+0,\left(6\right)\)
Bài 2: Tìm x, y, z biết :
a. \(\left(x-10\right)^{1+x}=\left(x-10\right)^{x+2009}\left(x\in Z\right)\)
b. \(\left|x-2007\right|+\left|x-2008\right|+\left|y-2009\right|+\left|x-2010\right|=3\left(x,y\in N\right)\)
c. \(25-y^2=8\left(x-2009\right)^2\left(x,y\in Z\right)\)
d. \(2008\left(x-4\right)^2+2009\left|x^2-16\right|+\left(y+1\right)^2\le0\)
e. \(2x=3y\) ; \(4z=5x\) và \(3y^2-z^2=-33\)
Bài 3: Chứng minh rằng
a. \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2009^2}>\frac{1}{2009}\)
b. \(\left[75\cdot\left(4^{2008}+4^{2007}+4^{2006}+...+4+1\right)+25\right]⋮100\)
Bài 4:
a. Tìm giá trị nhỏ nhất của biểu thức : \(M=\left(x^2+2\right)+\left|x+y-2009\right|+2005\)
b. So sánh: \(31^{11}\) và \(\left(-17\right)^{14}\)
c. So sánh: \(\left(\frac{9}{11}-0,81\right)^{2012}\) và \(\frac{1}{10^{4024}}\)
Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)
\(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)
\(=100.\frac{2}{101}=\frac{200}{101}\)
tìm x biết
1)\(-\frac{2}{3}\cdot\left(x-\frac{1}{4}\right)=\frac{1}{3}\cdot\left(2x-1\right)\)
2)\(\frac{1}{5}\cdot2^x+\frac{1}{5}\cdot2^{x+1}=\frac{1}{5}\cdot2^7+\frac{1}{3}\cdot2^8\)
1. giá trị của 254.86 là một số gồm.... chữ số
2. so sánh: \(x=\left(\frac{1}{5}\right)^{300}\) và \(y=\left(\frac{1}{3}\right)^{500}\)
1.So sánh hai số: \(a=15^{120}:25^{60}\) và \(b=2^{45}.2^{15}.4^{60}\)
2. Tính: \(\left(\frac{-3}{2}\right)^2-\left[\frac{1}{2}:2-\sqrt{81.}\left(\frac{-1}{2}\right)^2\right]\)
Mn giúp tôi vs nhiều bài wa lm ko hết lên đâu cầu cứu
a) ta có A=\(15^{120}:25^{60}=3^{120}.5^{120}:5^{120}=3^{120}=9^{60}\)
B=\(2^{45}.2^{15}.4^{60}=2^{60}.2^{120}=2^{180}=8^{60}\)
-> A<B
b) bạn chỉ cần tính từng cái ra là dc ý ,ak dễ lắm nếu bạn chăm chỉ
tìm số nguyên x
a)\(27^n:3^n=9\)
b)\(\left(\frac{-1}{3}\right)^N=\frac{1}{81}\)c)\(\frac{25}{5^n}=5\)d)\(\frac{1}{2}\cdot2^n+4\cdot2^n=9\cdot2^5\)e)\(\frac{81}{\left(-3\right)^n}=-243\)
Bn nào giải đc câu nào thì giải nhé ko giải đc câu nào thì thôi
kết quả so sánh x= \(\frac{\left(1\right)^{300}}{5}\)va y=\(\frac{\left(1\right)^{500}}{3}\)
tìm x
1, \(\frac{1}{3}x+\frac{2}{5}\left(x-1\right)=0\)
2, \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{49}{50}\)
3, \(x-\left(\frac{11}{12}-x\right)=x-\frac{3}{4}\)
4, \(-29-4\cdot|3x+6|=-41\)
5, \(\frac{1}{5}\cdot2x+\frac{1}{3}\cdot2^{x+1}=\frac{1}{5}\cdot2^7+\frac{1}{3}\cdot2^8\)
MỌI NGƯỜI LÀM ĐƯỢC CÂU NÀO THÌ LÀM GIÚP EM Ạ
\(\frac{1}{3}x+\frac{2}{5}\left(x-1\right)=0\)
\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x-\frac{2}{5}=0\)
\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x=0+\frac{2}{5}\)
\(\Leftrightarrow x\left(\frac{1}{3}+\frac{2}{5}\right)=\frac{2}{5}\)
\(\Leftrightarrow x\left(\frac{5}{15}+\frac{6}{15}\right)=\frac{2}{5}\)
\(\Leftrightarrow\frac{11}{15}x=\frac{2}{5}\)
\(\Leftrightarrow x=\frac{2}{5}\div\frac{11}{15}\)
\(\Leftrightarrow x=\frac{6}{11}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{49}{50}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{49}{50}\)
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{49}{50}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{49}{50}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{49}{50}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{50}\div2\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{50}\times\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{100}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{49}{100}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{50}{100}-\frac{49}{100}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{100}\)
\(\Leftrightarrow x+1=100\)
\(\Leftrightarrow x=100-1\)
\(\Leftrightarrow x=99\)
\(x-\left(\frac{11}{12}+x\right)=x-\frac{3}{4}\)
\(\Leftrightarrow x-\frac{11}{12}-x=x-\frac{3}{4}\)
\(\Leftrightarrow-\frac{11}{12}=x-\frac{3}{4}\)
\(\Leftrightarrow x=\frac{-11}{12}+\frac{3}{4}\)
\(\Leftrightarrow x=\frac{-11}{12}+\frac{9}{12}\)
\(\Leftrightarrow x=\frac{-2}{12}=\frac{-1}{6}\)
tìm x biết
a,\(\left|2x+\frac{3}{4}\right|=\frac{1}{2}\)
b,\(\frac{3x}{2,7}=\frac{\frac{1}{4}}{2\frac{1}{4}}\)
c,\(\left|x-1\right|+4=6\)
d, \(\frac{x}{3}=\frac{y}{5}\) và y-x=24
e, \(\left(x^2-3\right)^2=16\)
f, \(\frac{3}{4}+\frac{2}{5}x=\frac{29}{60}\),
g, \(\left(-\frac{1}{3}\right)^3.x=\frac{1}{81}\)
k,\(\frac{3}{4}-\frac{2}{5}x=\frac{29}{60}\)
l,\(\frac{3}{5}x-\frac{1}{2}=-\frac{1}{7}\)
a) \(\left|2x+\frac{3}{4}\right|=\frac{1}{2}\)
\(\orbr{\begin{cases}2x+\frac{3}{4}=\frac{1}{2}\\2x+\frac{3}{4}=\frac{-1}{2}\end{cases}}\) => \(\orbr{\begin{cases}2x=\frac{1}{2}-\frac{3}{4}\\2x=\frac{-1}{2}-\frac{3}{4}\end{cases}}\) => \(\orbr{\begin{cases}2x=\frac{-1}{4}\\2x=\frac{-5}{4}\end{cases}}\) => \(\orbr{\begin{cases}x=\frac{-1}{8}\\x=\frac{-5}{8}\end{cases}}\)
Vậy \(x=\left\{\frac{-1}{8},\frac{-5}{8}\right\}\)
b) \(\frac{3x}{2,7}=\frac{\frac{1}{4}}{2\frac{1}{4}}\)= \(\frac{3x}{2,7}=\frac{\frac{1}{4}}{\frac{9}{4}}\)
=> \(3x.\frac{9}{4}=2,7.\frac{1}{4}\)=> \(\frac{27x}{4}=\frac{27}{40}\)
\(27x.40=27.4\)
\(1080.x=108\)
\(x=\frac{1}{10}\)
Vậy \(x=\frac{1}{10}\)
c) \(\left|x-1\right|+4=6\)
\(\left|x-1\right|=6-4\)
\(\left|x-1\right|=2\)
\(\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}}\)=> \(\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
Vậy \(x=\left[3,-1\right]\)
d) \(\frac{x}{3}=\frac{y}{5}=>\frac{y}{5}=\frac{x}{3}=>\frac{y-x}{5-3}=\frac{24}{2}=12\)
e) \(\left(x^2-3\right)^2=16\)
\(\left(x^2-3\right)^2=4^2\)\(=>x^2-3=4\)
\(x^2=7=>x=\sqrt{7}\)
Vậy \(x=\sqrt{7}\)
f) \(\frac{3}{4}+\frac{2}{5}x=\frac{29}{60}\)
\(\frac{2}{5}x=\frac{29}{60}-\frac{3}{4}\)
\(\frac{2}{5}x=-\frac{4}{15}\)
\(x=-\frac{4}{15}:\frac{2}{5}=-\frac{4}{15}.\frac{5}{2}=-\frac{2}{3}\)
Vậy \(x=-\frac{2}{3}\)
g) \(\left(-\frac{1}{3}\right)^3.x=\frac{1}{81}\)
\(\left(-\frac{1}{27}\right).x=\frac{1}{81}\)
\(x=\left(-\frac{1}{27}\right):\frac{1}{81}=\left(-\frac{1}{27}\right).81=-3\)
Vậy \(x=-3\)
k)\(\frac{3}{4}-\frac{2}{5}x=\frac{29}{60}\)
\(\frac{2}{5}x=\frac{3}{4}-\frac{29}{60}\)
\(\frac{2}{5}x=\frac{4}{15}\)
\(x=\frac{2}{5}-\frac{4}{15}=>x=\frac{2}{15}\)
Vậy \(x=\frac{2}{15}\)
I) \(\frac{3}{5}x-\frac{1}{2}=-\frac{1}{7}\)
\(\frac{3}{5}x=-\frac{1}{7}+\frac{1}{2}\)
\(\frac{3}{5}x=\frac{5}{14}\)
\(x=\frac{5}{14}:\frac{3}{5}=\frac{5}{14}.\frac{5}{3}=\frac{25}{42}\)
Vậy \(x=\frac{25}{42}\)