Tìm GTLN của 2x^2-y^2+12x-2xy+8y-30
tìm GTLN (hoặc GTNN) của
A= (x2-6x+5)(x2-8x+9)+9
B= 4x2+5y2-4xy+12x-10y+17
C= -x2-8y2+4xy-2x+8y+1
D= -x2-2y2+2xy-4x+8y-17
Mình cảm ơn trước nha!
Có link câu này bạn tham khảo xem có được không nhé
https://h.vn/hoi-dap/question/535151.html
Học tốt nhé!
tìm GTLN của A=-x2+2xy-4y2+2x+8y-8
tìm GTLN của biểu thức: A= -x2 + 2xy - 4y2 + 2x + 8y - 8
A=\(-x^2+2xy-4y^2+2x+8y-8=-\left(x^2-2xy+y^2-2x+1+2y\right)-\left(3y^2-6y+3\right)-4=-4-\left(x-y-1\right)^2-3\left(y-1\right)^2\le-4\)
=>Max A=-4<=>(x-y-1)2=0 và (y-1)2=0<=>x=2 y=1
Tìm GTNN
\(x^2+2y^2+2xy+2x+4y-1.\)
Tìm GTLN
\(-x^2-2x-y^2-8y-10.\)
Đặt \(A=x^2+2y^2+2xy+2x+4y-1\)
\(A=\left(x^2+2xy+y^2\right)+\left(y^2+2y\right)+\left(2x+2y\right)-1\)
\(A=\left[\left(x+y\right)^2+2\left(x+y\right)+1\right]+\left(y^2+2y+1\right)-3\)
\(A=\left(x+y+1\right)^2+\left(y+1\right)^2-3\ge-3\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}}\)
Vậy GTNN của \(A\) là \(-3\) khi \(x=0\) và \(y=-1\)
Chúc bạn học tốt ~
Đặt \(B=-x^2-2x-y^2-8y-10\)
\(-B=\left(x^2+2x+1\right)+\left(y^2+8y+16\right)-7\)
\(-B=\left(x+1\right)^2+\left(y+4\right)^2-17\ge-17\)
\(B=-\left(x+1\right)^2-\left(y+4\right)^2+17\le17\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(x+1\right)^2=0\\-\left(y+4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-4\end{cases}}}\)
Vậy GTLN của \(B\) là \(17\) khi \(x=-1\) và \(y=-4\)
Chúc bạn học tốt ~
1.Tìm GTLN:
a)-2x^2+4x-18
b)-2x^2-12x+12
c)-2x^2+2xy-5y^2+4y+2x+1
2.Tìm x,y:
a)x^2-2x+4y^2+4y+2
b)4x^2-8x+y+2y
\(1.\)
\(a;A=-2x^2+4x-18\)
\(A=-2\left(x^2-4x+18\right)\)
\(A=-2\left(x^2-2.x.2+4+14\right)\)
\(A=-2\left(x-2\right)^2-14\le-14\)
Dấu = xảy ra khi : \(x-2=0\)
\(\Rightarrow x=2\)
Vậy Amax =-14 tại x = 2
Các câu còn lại lm tương tự........
1.Tìm GTLN:
a)-2x^2+4x-18
b)-2x^2-12x+12
c)-2x^2+2xy-5y^2+4y+2x+1
2.Tìm x,y:
a)x^2-2x+4y^2+4y+2
b)4x^2-8x+y+2y
\(a-2x^2+4x-18\)
=-[(2x2-2x.2+4)+14]
=-[(2x-2)2+14]
=-(2x-2)2-14
Vì -(2x-2)2 bé hơn hoặc bằng 0 với mọi x nên -(2x-2)2-14 bé hơn hoặc bằng -14
Dấu "=" xảy ra khi x=1
Vậy GTLN là -14 tại x=1
Mấy bài khác tương tự nha bạn. Áp dụng hằng đẳng thức và trình bày như thế
bài 2 xem lại cách ra đề nha bạn
Tìm GTNN C= 2x^2 +5y^2+4xy-4x-8y+6
Tìm GTLN: D= -5x^2-2xy-2y^2+14x+10y-1
1.Tìm GTLN:
a)-2x^2+4x-18
b)-2x^2-12x+12
c)-2x^2+2xy-5y^2+4y+2x+1
2.Tìm x,y:
a)x^2-2x+4y^2+4y+2
b)4x^2-8x+y+2y
Giúp mk nha
1.Tìm GTLN:
a)-2x^2+4x-18
Ấn vào máy tính : mode 5 1
Rồi án hệ phương trình vào lặp 3 lần dấu =
kq = 1
b)-2x^2-12x+12
Ấn tương tự phần a
kq = -3
c)-2x^2+2xy-5y^2+4y+2x+1
Câu này bạn chuyển về hằng đẳng thức rồi xét nghiệm tìm GTLN nha
2.Tìm x,y:
a)x^2-2x+4y^2+4y+2
= x2 - 2x . 1+ 12 + ( 2y )2 + 2 . 2y . 1 + 12
= ( x - 1 ) 2 + ( 2y + 1 ) 2
+) ( x - 1 ) 2 = 0 +) ( 2y + 1 ) 2 = 0
x - 1 = 0 2y + 1 = 0
x = 1 y = \(-\frac{1}{2}\)
b)4x^2-8x+y+2y
Câu này cũng tương tự như câu trên chuyển về hằng đẳng thức nha
tìm GTNN của A=2x^2+y^2-2xy-2x+y-12
tìm GTLN của A=-2x^2-y^2-2xy-2x+y-12
\(A=2x^2+y^2-2xy-2x+y-12\)
\(A=\left(x^2-2xy+y^2\right)+x^2-2x+y-12\)
\(A=\left[\left(x-y\right)^2-2\left(x-y\right).\frac{1}{2}+\frac{1}{4}\right]+\left(x^2-x+\frac{1}{4}\right)-\frac{25}{2}\)
\(A=\left(x-y-\frac{1}{2}\right)^2+\left(x-\frac{1}{2}\right)^2-\frac{25}{2}\)
Do \(\left(x-y-\frac{1}{2}\right)^2\ge0\forall x;y\)
\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow A\ge-\frac{25}{2}\)
Dấu "=" xảy ra khi : \(\hept{\begin{cases}x-y-\frac{1}{2}=0\\x-\frac{1}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=0\end{cases}}\)
Vậy \(A_{Min}=-\frac{25}{2}\Leftrightarrow\left(x;y\right)=\left(\frac{1}{2};0\right)\)
\(A=-2x^2-y^2-2xy-2x+y-12\)
\(-A=2x^2+y^2+2xy+2x-y+12\)
\(-A=\left(x^2+2xy+y^2\right)+x^2+2x-y+12\)
\(-A=\left[\left(x+y\right)^2-2\left(x+y\right).\frac{1}{2}+\frac{1}{4}\right]+\left(x^2+3x+\frac{9}{4}\right)+\frac{19}{2}\)
\(-A=\left(x+y-\frac{1}{2}\right)^2+\left(x+\frac{3}{2}\right)^2+\frac{19}{2}\)
Do \(\left(x+y-\frac{1}{2}\right)^2\ge0\forall x;y\)
\(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge\frac{19}{2}\Leftrightarrow A\le-\frac{19}{2}\)
Dấu "=" xảy ra khi : \(\hept{\begin{cases}x+y-\frac{1}{2}=0\\x+\frac{3}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=2\end{cases}}\)
Vậy \(A_{Max}=-\frac{19}{2}\Leftrightarrow\left(x;y\right)=\left(-\frac{3}{2};2\right)\)