Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bangtan Sonyeondan
Xem chi tiết
coolkid
30 tháng 10 2019 lúc 18:10

Ta có:
\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)-3\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a=b=c\) hay tam giác ABC đều.

Khách vãng lai đã xóa
redf
Xem chi tiết
nguyễn ngọc minh hà
Xem chi tiết
Toàn Lê Phúc
Xem chi tiết
Cold Wind
4 tháng 12 2016 lúc 16:00

\(a^2+b^2+c^2=ab+bc+ac\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c}\)

Vậy tam giác đó là tam giác đều 

bao quynh Cao
4 tháng 12 2016 lúc 16:18

\(a^2+b^2+c^2=ab+bc+ac\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\left(1\right)\)

vi   \(\left(a-b\right)^2\ge0\)

 \(\left(a-c\right)^2\ge0\)

\(\left(b-c\right)^2\ge0\)

de \(\left(1\right)\) xay ra thi \(\hept{\begin{cases}a-b=0\\a-c=0\\b-c=0\end{cases}\Leftrightarrow a=b=c}\)

         \(\Leftrightarrow\)do la tam giac deu

Cold Wind
4 tháng 12 2016 lúc 16:24

Dài quá, dùng phương pháp hệ số giả định (hình như gọi thế này) là ra ngay: 

Aa + Bb + Cc = Ab + Bc + aC Phần hệ số in hoa => a=b; b=c; c=a Xét lần lượt từng cặp hạng tử tương ứng của 2 vế

Bùi Nhật Vy
Xem chi tiết
ST
18 tháng 7 2018 lúc 10:05

Ta có; \(a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Mà \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow a=b=c}\)

Vậy...

Nguyễn Thái Anh
Xem chi tiết
Đỗ Thị Dung
Xem chi tiết
✆✘︵07XO
6 tháng 4 2019 lúc 22:12

Giả sử \(0< a\le c\)\(\Rightarrow a^2\le c^2\)

 \(a^2+b^2>5c^2\)

\(\Rightarrow a^2+b^2>5a^2\)

\(\Rightarrow b^2>4a^2\)

\(\Rightarrow b>2a\)   (1)

           \(c^2\ge a^2\Rightarrow c^2+b^2\ge a^2+b^2>5c^2\)

                              \(\Rightarrow c^2+b^2>5c^2\)\(\Rightarrow b^2>4c^2\Rightarrow b>2c\)         (2)

Cộng (1) và (2) ta được:

  \(2b>2a+2c\Rightarrow b>a+c\) ( vô lý )

\(\Rightarrow c< a\)

 Chứng minh tương tự :  \(c< b\)

Do \(\hept{\begin{cases}c< a\\c< b\end{cases}\Leftrightarrow\hept{\begin{cases}AB< BC\\AB< AC\end{cases}}}\Rightarrow\hept{\begin{cases}\widehat{C}< \widehat{A}\\\widehat{C}< \widehat{B}\end{cases}}\)

\(\Rightarrow2\widehat{C}< \widehat{A}+\widehat{B}\)

\(\Rightarrow3\widehat{C}< \widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(\Rightarrow\widehat{C}< 60^o\) (đpcm)

Đỗ Thị Dung
6 tháng 4 2019 lúc 22:12

cảm ơn bn nha!

Doãn Thị Thu Trang
Xem chi tiết
nguyễn văn nhật nam
Xem chi tiết