Cho x ,y >0 và x+y=\(\frac{2017}{2016}\)
Tìm Min S=\(\frac{2016}{x}+\frac{1}{2016y}\)
Cho x;y>0 thỏa mãn x+y=\(\frac{2016}{2017}\).Tìm GTNN của:\(\frac{2016}{x}+\frac{1}{2016y}\)
Cho các số x,y,z,t khác 0 và 2016y - 2017t khác 0 biết :
\(\frac{x}{y}=\frac{z}{t}=\frac{z-2x}{2016y-2017t}\)
Tính y2016- t2016
ta có: \(\frac{x}{y}=\frac{z}{t}=\frac{z-2x}{2016y-2017t}=\frac{x-z}{y-t}=\frac{z-x}{2017\left(y-t\right)}\)
\(\Rightarrow2017\left(x-z\right)\left(y-t\right)=-\left(x-z\right)\left(y-t\right)\Rightarrow2017\left(y-t\right)=-\left(y-t\right)\)
\(\Rightarrow2018\left(y-t\right)=0\Rightarrow y=t\Rightarrow y^{2016}=t^{2016}\)
\(\Rightarrow y^{2016}-t^{2016}=0\)
Cho a, b, c, khác 0. Tính giá trị biểu thức :\(A=x^{2017}+y^{2017}+z^{2017}\)
biết x,y,z thỏa mãn:
\(\frac{x^{2016}+y^{2016}+z^{2016}}{a^{2016}+b^{2016}+c^{2016}}=\frac{x^{2016}+y^{2016}+z^{2016}}{a^{2016}+b^{2016}+c^{2016}}\)
cho x,y,z thỏa mãn \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right):\left(\frac{1}{x+y+z}\right)=1\)
tìm B=\(\left(x^{2016}+y^{2016}\right)\left(y^{2017}+z^{2017}\right)\left(z^{2018}+x^{2018}\right)\)
So sánh x và y biết : \(x=\frac{2016^{2017}+1}{2016^{2016}+1}\) và \(y=\frac{2016^{2016}+1}{2016^{2015}+1}\)
Ta có :
\(x=\frac{2016^{2017}+1}{2016^{2016}+1}\)
\(\frac{1}{2016}x=\frac{2016^{2017}+1}{2016^{2017}+2016}=\frac{2016^{2017}+2016-2015}{2016^{2017}+2016}\)
\(\Rightarrow\frac{1}{2006}x=1-\frac{2015}{2016^{2017}+2016}\)
Ta lại có :
\(y=\frac{2016^{2016}+1}{2016^{2015}+1}\)
\(\Rightarrow\frac{1}{2016}y=\frac{2016^{2016}+1}{2016^{2016}+2016}=\frac{2016^{2016}+2016-2015}{2016^{2016}+2016}\)
\(\Rightarrow\frac{1}{2016}y=1-\frac{2015}{2016^{2016}+2016}\)
Mà \(\frac{2015}{2016^{2017}+2016}< \frac{2015}{2016^{2016}+2016}\)(so sánh mẫu)
\(\Rightarrow1-\frac{2015}{2016^{2017}+2016}>1-\frac{2015}{2016^{2016}+2016}\)
\(\Rightarrow\frac{1}{2016}x>\frac{1}{2016}y\)
\(\Rightarrow x>y\)
DÀI QUÁ KHÔNG TÍNH ĐƯỢC. CÁI NÀY CÓ MÀ ĐI HỎI THẦN ĐỒNG VỀ MÔN TOÁN ĐI
\(x< \frac{2016^{2017}+1+2015}{2016^{2016}+1+2015}\)
\(\Rightarrow x< \frac{2016^{2017}+2016}{2016^{2016}+2016}\)
\(\Rightarrow x< \frac{2016.\left(2016^{2016}+1\right)}{2016.\left(2016^{2015}+1\right)}\)
\(\Rightarrow x< y\)
. đi bạn
cho 3 số x,y,z tm\(\hept{\begin{cases}x+y+z=2010\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2010}\end{cases}}\)
tính(x2016+y2016)(y2017+z2017)(z2018+x2018)
Từ giả thiết ta có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)
\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow x+y=0\) hoặc \(y+z=0\) hoặc \(z+x=0\)
+) Nếu x + y = 0 hoặc z + x = 0 thì ta không tính được giá trị biểu thức.
+) Nếu y + z = 0 thì \(y=-z\Leftrightarrow y^{2017}=-z^{2017}\Leftrightarrow y^{2017}+z^{2017}=0\)
Suy ra \(\left(x^{2016}+y^{2016}\right)\left(y^{2017}+z^{2017}\right)\left(x^{2018}+z^{2018}\right)=0\)
a) cho x,y,z thỏa mãn \(\frac{2015z-2016y}{2014}\)= \(\frac{2016x-2014z}{2015}\) = \(\frac{2014y-2015x}{2015}\) và x-3y+2=2015
b) tìm giá trị của biểu thức P=(x+2015)2016+(y+2015)2016+(z+2015)2016
giúp tớ bài này nha mn . làm 1 trong 2 bài cx đc. cả thì càng tốt
1. cho các số thực dương a,b,c thỏa mãn : a+b+c = 2016
Tìm GTNN của P = \(\frac{2a+3b+3c+1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2c-1}{2017+c}\)
2. cho x,y > 0 . CMR : \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3.\left(\frac{x}{y}+\frac{y}{x}\right)\)
1.
Ta có: \(\frac{2a+3b+3c+1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2ac-1}{2017+c}\)
\(=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)
Đặt \(\hept{\begin{cases}2015+a=x\\2016+b=y\\2017+c=z\end{cases}}\)
\(P=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)
\(=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=\frac{y}{x}+\frac{z}{x}+\frac{z}{y}+\frac{x}{y}+\frac{x}{z}+\frac{y}{z}\)
\(\ge2\sqrt{\frac{y}{x}\cdot\frac{x}{y}}+2\sqrt{\frac{z}{x}\cdot\frac{x}{z}}+2\sqrt{\frac{y}{z}\cdot\frac{z}{y}}\left(Cosi\right)\)
Dấu "=" <=> x=y=z => \(\hept{\begin{cases}a=673\\b=672\\c=671\end{cases}}\)
Vậy Min P=6 khi a=673; b=672; c=671
Câu 1 thử cộng 3 vào P xem
Rồi áp dụng BDT Cauchy - Schwars : a^2/x + b^2/y + c^2/z ≥(a + b + c)^2/(x + y + z)
cho 3 số x,y,z tm\(\hept{\begin{cases}x+y+z=2010\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2010}\end{cases}}\)
tính(x2016+y2016)(y2017+z2017)(z2018+x2018)
Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow x+y=0\) hoặc \(y+z=0\) hoặc \(z+x=0\)
Tới đây bạn tự làm được rồi ^^
bạn có thể làm nữa đươc ko
giúp mình với