Chứng tỏ rằng 328 - 813 + 169 chia hết cho 72.
Chứng tỏ rằng số có dạng abc abc bao giờ cũng chia hết cho 11 (chẳng hạn: 328 328 chia hết cho 11).
Ta có so abcabc = 100000a + 10000b + 1000c + 100a + 10b + c
= 100100a + 10010b + 1001c
= 11 x ( 9100a + 910b + 91c )
Vay so abcabc : 11 = 9100a + 910b + 91c
Hay so abcabc chia het cho 11
**** mk nha
Chứng tỏ rằng số có dạng abc abc lúc nào cũng chia hết cho 11 ( chẳng hạn : 328 328 : 11 )?
Ta có : abcabc = abc x 1000 + abc = abc x 1001 = abc x 11 x 91 => abcabc chia hết 11
Chứng tỏ rằng số có dạng abc abc bao giờ cũng chia hết cho 11 [chẳng hạn : 328 328 chia hết cho 11 ]
abcabc = 100000a + 10000b + 1000c + 100a +10b + c
= 100100a + 10010b + 1001c
100100a : 11 = 9100a
10010b : 11 = 9100
1001a : 11 = 91
Vậy ta có điều phải chứng minh
Ta có : abcabc = abc x 1000 + abc x 1 = abc x ( 1000 + 1 ) = abc x 1001 = abc x 7 x 11 x 13
=> abcabc chia hết cho 11.
( Xin lỗi vì mình không biết cách làm đấu gạch trên đầu )
Có abcabc=abc.1001
=abc.7.11.13 chia het cho 11
Suy ra abc chia het cho 11(dpcm)
a, Chứng tỏ rằng số có dạng abc abc bao giờ cũng chia hết cho 11 (chẳng hạn 328 328 chia hết cho 11).
ai nhanh mk tick rất nhiều
164164
246246
328328
410410
492492
656656
820820
984984
ta có:
abc abc=a.100 000 + b.10 000 + c.1 000 + a.100 + b.10 + c
=a.100 100 + b.10 010 + c.1 001
=a.9 100.11 + b.910.11 + c.99.11
=11.(a.9100 + b.910 + c.99)
mà 11.(a.9100 + b.910 + c.99) chia hết cho 11
vậy abc abc chia hết cho 11(đpcm)
Chứng tỏ rằng số có dạng abc abc bao giờ cũng chia hết cho 11(chẳng hạn: 328 328:11). Mk cần 1 kết quả khác.
Bài giải :
Cách 1 :
abc abc = a x 100 000 + b x 10 000 + c x 1000 + a x 100 + b x 10 + c x 1
abc abc = a x ( 100 000 + 100 ) + b x ( 10 000 + 10 ) + c x ( 1000 + 1 )
abc abc = a x 110 000 + b x 11 000 + c x 1100
Ta có : a x 110 000 chia hết cho 11
b x 11 000 chia hết cho 11
c x 1100 chia hết cho 11
Suy ra :
a x 110 000 + b x 11 000 + c x 1100 chia hết cho 11 => abc abc chia hết cho 11 .
Cách 2 :
Các số chia hết cho 11 thì có hiệu của tổng các chữ số ở hàng lẻ với tổng các chữ số ở hàng chẵn chia hết cho 11 . ( Trường hợp hiệu bằng 0 => chia hết cho 11 )
Trong số abc abc các số ở hàng lẻ là : a , c , b
------------------------- Các số ở hàng chẵn là : b , a , c .
Hiệu là :
( a + c + b ) - ( b + a + c ) = 0
0 chia hết cho 11 .
Suy ra abc abc chia hết cho 11 .
Chứng tỏ rằng:10^2011 + 8 chia hết cho 72
Ta có:
\(10^{2011}=100...00\)( 2001 số 0 )
\(10^{2011}+8=100...08\)( 2010 số 0 )
=> Tổng các số hạng của 100...08 là: \(1+8=9\)
=> \(10^{2011}+8⋮9\)
Vì \(100...08\)có 2 chữ số tận cùng là 08 nên chia hết cho 8
=> \(10^{2011}+8⋮8\)
Vì \(10^{2011+8}⋮8,9\)
=> \(10^{2011}+8⋮72\left(72=9.8\right)\left(đpcm\right)\)
Có 72=8.9
Vì 10^2011 \(⋮\)8 và 8\(⋮\)8 nên 10^2011+8\(⋮\)8 (1)
Có 10^2011+8=1000...008 (có 2010 số 0)
Tổng các chữ số của 10^2011+8=1+8=9\(⋮\) (2)
Từ (1) và (2) suy ra
10^2011+8 chia hết cho 8 và 9
mà (8,9)=1 nên 10^2011 \(⋮\)8.9
10^2011\(⋮\)72
Vậy....
\(10^{2011}+8\)chia hết cho 72
Mà 72= 9.8, Vì ƯCLN(9,8)=1
suy ra \(10^{2011}+8\)chia hết cho 9 và \(10^{2011}+8\)chia hết cho 8
Ta có \(10^{2011}+8\)có tổng các chữ số là 1+0+0+0+0+...+0 + 8 = 9 chia hết cho 9 ( 2011 chữ số 0)
suy ra \(10^{2011}+8\)chia hết cho 9 (1)
Lại có \(10^{2011}+8\)=1000...008 chia hết cho 8 ( vì 008 chia hết cho 8) (2)
ƯCLN(8,9) = 1 (3)
Từ (1), (2), (3) suy ra \(10^{2011}+8\)chia hết cho 72
chứng tỏ rằng 10^2016 + 80 chia hết cho 72 .
Ta có 10^2016 =1000...0(2016 chữ số 0) suy ra 10^2016 +80=10000...080 . Vì 080 chia hết cho 8 nên 10^2016+80 chia hết cho 8 .Mặt khác 10^2016+80 chia hết cho 9 vì 1+0+0+0+...+0+0+8+0=9 chia hết cho 9. Vì 10^2016+80 chia hết cho cả 8 và 9 nên nó chia hết cho 72.
Vậy 10^2016+80 chia hết cho 72
chứng tỏ rằng 1028+8 chia hết cho 72
Số chia hết cho 72 là chia hết cho 9 và 8.
Ta có 1028 + 8 = 100...0 (28 chữ số 0) + 8 có tổng các chữ số là 1 + 0 + ... +0 + 8 = 9 chia hết cho 9.
1028 + 8 có 3 chữ số tận cùng là 008 chia hết cho 8.
=> 1028 + 8 chia hết cho 72
a) chứng tỏ rằng 85 +2 11 chia hết cho 17
b)chứng tỏ rằng 8 7-2 18chia hết cho 14
c) chứng tỏ rằng 79 2+79.11 chia hết cho 30
d)chứng tỏ rằng 69 2-69.5 chia hết cho 32
B=3+3 3+3 5+.....+3 1991. chứng minh rằng B chia hết cho 13 và 41
11 n+2+12 20+1 chia hết cho 133
10 28 +8 chia hết cho 72
a) 85+211=23.5+211=211(24+1)=211.17 chia hết cho 17
Chứng tỏ rằng:1028+8 chia hết cho 72
Lời giải:
$10^{28}+8=2^{28}.5^{28}+8=2^3.2^{25}.5^{28}+8=8.2^{25}.5^{28}+8$
$=8(2^{25}.5^{28}+1)\vdots 8(1)$
$10^{28}+8\equiv 1^{28}+8\equiv 1+8\equiv 9\equiv 0\pmod 9$
$\Rightarrow 10^{28}+8\vdots 9(2)$
Từ $(1); (2)\Rightarrow 10^{28}+8\vdots (8.9)$ hay $10^{28}+8\vdots 72$.