cho x,y,z thuoc N* .Chung minh :(x/x+y)+(y/y+z)+(z/z+x)>1
Cau 1 .Cho A = 3/4 + 8/9 + 15/16 +…+ 9999/10000
Chung to a lon hon 4/3
CAU 2 . A = x/x+y + y/y+z +x/x+z
Cho z , y z thuoc N* chung to A k thuoc N
Cau 2.la z/ x +z chu k phai x / x+z nha mk nham
Xin lỗi biết làm câu 1 thôi,thông cảm
Ta có A=:
\(=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{100^2-1}{100^2}\)
\(=\frac{2^2}{2^2}+\frac{3^2}{3^2}+...+\frac{100^2}{100^2}-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
\(=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
Mà \(\left(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}\right)< |\frac{100}{101}\)(tự tính)
\(\Rightarrow C>98\left(đpcm\right)\)
X,y,z,thuoc [0;2] và x+y+z+=+3 chung minh x*2+y*2+z*2=5
X,y,z,thuoc [0;2] và x+y+z+=+3 chung minh x^2+y^2+z^2=5
1.Cho x, y thuoc Z
Chung minh : 6x +11y chia het cho 31khi va chi khi: x+7y chia het cho 31
2.Cho x,y,z thuoc Z va x2 +y2=z2
Chung minh: xy chia het cho 12
Ai lam nhanh nhat minh se tich cho
Khong bat buoc lam het 2 cau
6x+11y chia hết 31 nên 6x+11y+31y chia hết 31, hay 6x+42y chia hết 31, hay 6(x+7y) chia hết 31, suy ra x+7y chia hết 31 Vì ƯC(6,31)=1
Nếu x+7y chia hết 31 suy ra 6(x+7y) chia hết 31, hay 6x+42y chia hết 31, suy ra 6x+11y+31y chia hết 31, suy ra 6x+11y chia hết 31
cac ban oi giup minh voi
1.tim a,b thuoc Z,biet:a.(2b-3)=-6
2.cho x,y thuoc Z thoa man x mu 2 +y mu 2 chia het cho 3.chung to x va y chia het cho 3.
cho x=a/b va y=b/m voi a,b,m thuoc Z ;m>0 va x<y .Chung minh rang Z=a+b/2m thi x<Z<t
Cho x,y,z thuoc Z va x2+y2=z2
Chung minh: xy chia het cho 12
lam nhanh va day du ho minh
toan 8 cho (x+y)(x+z)+(y+z)(y+x)=2(z+x)(z+y) chung minh z^2=x^2+y^2/2
Ta có :
\(\left(x+y\right)\left(x+z\right)+\left(y+z\right)+\left(y+x\right)\)
\(=x^2+xz+xy+yz+y^2+xy+zy+xz\)
\(=x^2+y^2+2\left(xy+yz+zx\right)\)
\(2\left(x+z\right)\left(z+y\right)\)
\(=2\left(xz+z^2+xy+zy\right)\)
\(=2z^2+2\left(xy+yz+zx\right)\)
\(\Rightarrow x^2+y^2+2\left(xy+yz+zx\right)=2z^2+2\left(xy+yz+zx\right)\)
\(\Rightarrow x^2+y^2=2z^2\)
\(\Rightarrow z^2=\frac{x^2+y^2}{2}\)
toan 8 cho (x+y)(x+z)+(y+z)(y+x)=2(z+x)(z+y) chung minh z^2=x^2+y^2/2
Ta có :
\(\left(x+y\right)\left(x+z\right)+\left(y+z\right)\left(y+x\right)\)
\(=x^2+xz+xy+yz+y^2+xy+zy+xz\)
\(=x^2+y^2+2\left(xz+xy+yz\right)\)
\(2\left(x+z\right)\left(z+y\right)\)
\(=2\left(xz+z^2+xy+zy\right)\)
\(=2z^2+2\left(xz+xy+yz\right)\)
\(\Rightarrow x^2+y^2+2\left(xz+xy+yz\right)=2z^2+2\left(xz+xy+yz\right)\)
\(\Rightarrow x^2+y^2=2z^2\)
\(\Rightarrow z^2=\frac{x^2+y^2}{2}\)
Vây ...