xác định a, b, c để:
x^3-ax^2+bx-=(x-a)(x-b)(x-c) với mọi x
Xác định a, b, c, d biết:
a) (ax^2 + bx +c).(x+3) = x^3 + 2x^2 - 3x với mọi x
b) x^4 + x^3 - x^2 + ax + b = (x^2+x-2).(x^2+cx+d) với mọi x
Xác định a,b,c biết: (ax^2+bx+c)(x+3)=x^3+2x^2−3x với mọi x. Mọi người giúp mình nha mình tick cho
xác định a, b , c bt
(ax2+bx+c)(x+3)= x3+2x-3x với mọi x
Ta có \(\left(ax^2+bx+c\right).\left(x+3\right)=ax^3+3ax^2+bx^2+3bx+cx+3c\)
\(=a^3+\left(3a+b\right)x^2+\left(3b+c\right).x+3c\)
Đồng nhất thức hệ số với phương trình x^3+2x-3x ( kiểm tra lại đề )
rồi giải hệ phương trình ra thôi
Bài 1) Xác định hệ số a,b,c,d thỏa mãn các hệ thức sau với mọi giá trị của x
a) x^4+x^3-x^2+ax+b=(x^2+x-2).(x^2+cx+d)
b) x^3-ax^2+bx-c=(x-a).(x-b.(x-c)
Xin mọi ngườ hãy giúp tui ai trả lời nhanh nất tui sẽ h cho làm ơn tui đang cần gấp
pp U.C.T @ nỗi ám ảnh là đây
\(RHS=x^4+\left(c+1\right)x^3+\left(d+c-2\right)x^2+\left(d-2c\right)x-2d\)
Sử dụng pp U.C.T ta có hệ sau : \(\hept{\begin{cases}c+1=1\\d+c-2=-1\\d-2c=a-and--2d=b\end{cases}< =>\hept{\begin{cases}c=0\\d=1\\a=1andb=-2\end{cases}}}\)
câu b để tí nx mình làm nốt
Xác định hệ số a, b, c biết rằng với mọi x thì:
a) (5x - 3)(2x - c) = ax2+ bx + 21
b) (ax + 4)(x2 + bx - 1) = 9x3 + 58x2 + 15x + c
Trả lời nhanh giúp mình với, các bạn ơi! Mình rất cần đấy!
nhân hết ra rồi đống nhất hệ số hai bên là được
Xác định hệ số a, b, c, biết rằng với mọi x:
a) (2x - 5)(3x + b) = ax2 + x + c
b) (5x - 3)(2x - c) = ax2 + bx + 21
c) (ax + b)(x2 - x - 1) = ax3 + cx2 -1
a) (2x - 5)(3x + b) = ax^2 + x + c
<=> 6x^2 + 2bx -15x -5b = ax^2 + x + c
<=> -ax^2 + 2bx -5b -c = -6x^2 +16x
Đồng nhất hệ số ta có :
+) -a = -6 => a= 6
+) 2b = 16 => b= 8
+) -5b -c= 0 => c= -40
c ) (ax+b)( x^2 -x-1)= ax^3 - cx^2 - 1
<=> ax^3 -ax^2-ax +bx^2-bx-b= ax^3 - cx^2 - 1
<=> (c+b-a)x^2 -(a+b)x -b = -1
Đồng nhất hệ số ta được:
+) c+b-a =0
+) -a-b = 0
+) -b = -1 => b= 1
Thay b=1 ta được a = -1 và c= -2
<p>a) (2x - 5)(3x + b) = ax^2 + x + c<br><=> 6x^2 + 2bx -15x -5b = ax^2 + x + c<br><=> -ax^2 + 2bx -5b -c = -6x^2 +16x<br>Đồng nhất hệ số ta có :<br>+) -a = -6 => a= 6<br>+) 2b = 16 => b= 8<br>+) -5b -c= 0 => c= -40</p>
Xác định các hệ số a, b, c biết rằng với mọi giá trị của x thì:
a) (2x+3).(3x+a)=bx2 +cx-3
b) (ax+1).(x2-bx+3)=2x3-x2+5x+c
a) ( 2x + 3 )( 3x + a ) = bx2 + cx - 3
<=> 2x( 3x + a ) + 3( 3x + a ) = bx2 + cx - 3
<=> 6x2 + 2ax + 9x + 3a = bx2 + cx - 3
<=> 6x2 + ( 2a + 9 )x + 3a = bx2 + cx - 3
Đồng nhất hệ số
=> \(\hept{\begin{cases}b=6\\2a+9=c\\3a=-3\end{cases}}\Rightarrow\hept{\begin{cases}b=6\\c=7\\a=-1\end{cases}}\)
b) ( ax + 1 )( x2 - bx + 3 ) = 2x3 - x2 + 5x + c
<=> ax( x2 - bx + 3 ) + x2 - bx + 3 = 2x3 - x2 + 5x + c
<=> ax3 - abx2 + 3ax + x2 - bx + 3 = 2x3 - x2 + 5x + c
<=> ax3 + ( 1 - ab )x2 + ( 3a - b )x + 3 = 2x3 - x2 + 5x + c
Đồng nhất hệ số
=> \(\hept{\begin{cases}a=2\\1-ab=-1\\3a-b=5\end{cases}}\)và c = 3 => \(\hept{\begin{cases}a=2\\b=1\\c=3\end{cases}}\)
a) Ta có:
\(\left(2x+3\right)\left(3x+a\right)=bx^2+cx-3\)
\(\Leftrightarrow6x^2+\left(2a+9\right)x+3a=bx^2+cx-3\)
Đồng nhất hệ số ta được:
\(\hept{\begin{cases}6=b\\2a+9=c\\a=-1\end{cases}}\Rightarrow\hept{\begin{cases}a=-1\\b=6\\c=7\end{cases}}\)
b) \(\left(ax+1\right)\left(x^2-bx+3\right)=2x^3-x^2+5x+c\)
\(\Leftrightarrow ax^3+\left(1-ab\right)x^2+\left(3a-b\right)x+3=2x^3-x^2+5x+c\)
\(\Rightarrow\hept{\begin{cases}a=2\\1-ab=-1\\3a-b=5\end{cases}}\&c=3\)
\(\Rightarrow\hept{\begin{cases}a=2\\b=1\\c=3\end{cases}}\)
Xác định a, b, c để:
x^3 - ax^2 + bx - c = (x - a) (x - b) (x - c) với mọi x.
Ta có:
\(\left(x-a\right).\left(x-b\right).\left(x-c\right)\)
\(=x^3-\left(a+b+c\right).x^2+\left(ab+bc+ca\right).x-abc\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=a\\ab+bc+ca=b\\a.b.c=c\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}b+c=0\left(1\right)\\ab+bc+ca-b=0\left(2\right)\\c.\left(ba-1\right)=0\left(3\right)\end{matrix}\right.\)
Xét \((3)\) ta có :
\(\Leftrightarrow\left[{}\begin{matrix}c=0\\a.b=1\end{matrix}\right.\)
Với \(c=0\) thì \(b=0\) ; \(a\) tùy ý
Với \(a.b=1\) thì:
\(\Leftrightarrow\left[{}\begin{matrix}a=-1\\b=-1\end{matrix}\right.\)
1.Cho đa thức f(x)=ax2+bx.Xác định a,b để f(x)-f(x-1)=x với mọi giá trị x. Từ đó suy ra công thức tổng quát 1+2+...+n ( với n là số nguyên dương)
2. Xác định a,b,c,d biết
a) (ax2+bx+c)(x+3)=x3+2x2-3x với mọi x
b) x4+x3-x2+ax+b=(x2+x-2)(x2+cx+d) với mọi x