\(\frac{2005.2006+5518}{2006.2008-500}\)(tính nhanh)
Tính nhanh :
\(\frac{2004.2006+1000}{2005.2006-1006}\)
\(\frac{2004.2006+1000}{2005.2006-1006}\)
\(=\frac{2004.2006+1000}{\left(2004+1\right).2006-1006}\)
\(=\frac{2004.2006+1000}{2004.2006+2006-1006}\)
\(=\frac{2004.2006+1000}{2004.2006+1000}\)
\(=1\)
\(\frac{2004x2006+1000}{2005x2006-1006}\)
=\(\frac{1000}{1x2006-1006}\)cùng giảm 2004 lần số 2006
=\(\frac{1000}{1000}=1\)
Tính nhanh
2005.2007-1
2004+2005.2006
\(\frac{2005.2007-1}{2004+2005.2006}=\frac{2005.2006+2005-1}{2004+2005.2006}=\frac{2004+2005.2006}{2004+2005.2006}=1\)
tính nhanh
\(A=\frac{1}{500}+\frac{3}{500}+\frac{5}{500}+...+\frac{95}{500}+\frac{97}{500}+\frac{99}{500}\)
\(A=\frac{1}{500}+\frac{3}{500}+\frac{5}{500}+...+\frac{95}{500}+\frac{97}{500}+\frac{99}{500}\)
\(A=\frac{1+3+5+...+95+97+99}{500}\)
\(A=\frac{\left(1+99\right)x50:2}{500}=\frac{100x50:2}{500}=\frac{100x5x10x\frac{1}{2}}{100x5}=10x\frac{1}{2}=5\)
Cho A=\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\)
B=\(\frac{1}{1004.2006}+\frac{1}{1005.2006}+\frac{1}{1006.2006}+...+\frac{1}{2006.2006}\)
Tính A chia B
Đặt A=\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2005.2006}\)
B=\(\frac{1}{1004.2006}+\frac{1}{1005.2006}+...+\frac{1}{2006.1004}\)
Chứng tỏ rằng \(\frac{A}{B}\in Z\)
Ai làm được nhanh và đúng tớ tick đúng nhé
Tính nhanh: \(A=\frac{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}}{500-\frac{500}{501}-\frac{501}{502}-\frac{502}{503}-...-\frac{999}{1000}}\)
\(\frac{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}}{500-\frac{500}{501}-\frac{501}{502}-...-\frac{999}{1000}}=\frac{\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{999}-\frac{1}{1000}\right)}{500-\left(1-\frac{1}{501}\right)-\left(1-\frac{1}{502}\right)-...-\left(1-\frac{1}{1000}\right)}\)
hình như cái mẫu bạn ghi dấu sai thì phải, còn tử thì mình lười làm lắm
tử bạn tính ra 1/2+1/12+...+1/999 000 sau đó phân tích ra là
khó thật
nhớ L-I-K-E nhe tại vì cậu bảo giúp mình, mình cho đúng liền
cho A=\(\frac{1}{1.2}\)+\(\frac{1}{3.4}\)+...+\(\frac{1}{2005.2006}\)và B=\(\frac{1}{1008}\)+\(\frac{1}{1009}\)+...+\(\frac{1}{2016}\). Tính B-A
A = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)
=\(\left(\frac{1}{1}+\frac{1}{3}+...+\frac{1}{2005}\right)\)\(-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)
= \(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2005}+\frac{1}{2006}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)
= \(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2005}+\frac{1}{2006}\)\(-\frac{1}{1}-\frac{1}{2}-...-\frac{1}{1003}\)
= \(\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2005}+\frac{1}{2006}\)
(=) B - A = \(\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2015}+\frac{1}{2016}\)- \(\frac{1}{1004}-\frac{1}{1005}-...-\frac{1}{2005}-\frac{1}{2006}\)
= \(\frac{1}{2007}+\frac{1}{2008}+...+\frac{1}{2016}-\) \(\frac{1}{1004}-\frac{1}{1005}-\frac{1}{1006}-\frac{1}{1007}\)
\(A=\frac{1}{1.2}+\frac{1}{3.4}+......+\frac{1}{2003.2004}+\frac{1}{2005.2006}\)
Tìm A
Bó tay, sai đề rồi bn à, nếu tính đc thì cũng dài dòng lắm...........
Cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+............+\frac{1}{2005.2006}\)
\(B=\frac{1}{1004.2006}+\frac{1}{1005.2005}+.....+\frac{1}{2006.1004}\)
Tính \(\frac{A}{B}\)
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{2005.2006}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{2005}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)
\(=\left(1+\frac{1}{2}+...+\frac{1}{2006}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)
\(=\left(1+\frac{1}{2}+...+\frac{1}{2006}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1003}\right)\)
\(=\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\)(1)
\(B=\frac{1}{1004.2006}+\frac{1}{1005.2005}+....+\frac{1}{2006.1004}\)
\(\Rightarrow\frac{1}{1004}+\frac{1}{2006}+\frac{1}{1005}+\frac{1}{2005}+...+\frac{1}{2006}+\frac{1}{1004}=2\left(\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\right)\)
\(=\frac{\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}}{1505}\)(2)
Thế (1) và (2) vào ta có:
\(\frac{A}{B}=\frac{\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}}{\frac{\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}}{1505}}\)