Bài 1:Tìm x:
\(\frac{2x-5}{x+7}=\frac{3}{4}\)
Bài 2: cho\(\frac{a}{b}=\frac{c}{d}\left(b,d#0\right)\)chung minh:
\(\frac{a}{a-b}=\frac{c}{c-d}\)
Giúp mik với nhé ! Mình sẽ Tick cho.
Bài 1 : Tìm x biết :
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
b, \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
c,\(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
Bài 2 : Tìm x biết :
a, | 2x - 5 | = x +1
b, | 3x - 2 | -1 = x
c, | 3x - 7 | = 2x + 1
d, | 2x-1 | +1 = x
1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)
=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)
b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c) TT
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)
=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)
=> \(\left|50x-140\right|=\left|25x+24\right|\)
=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)
Bài 2 : a. |2x - 5| = x + 1
TH1 : 2x - 5 = x + 1
=> 2x - 5 - x = 1
=> 2x - x - 5 = 1
=> 2x - x = 6
=> x = 6
TH2 : -2x + 5 = x + 1
=> -2x + 5 - x = 1
=> -2x - x + 5 = 1
=> -3x = -4
=> x = 4/3
Ba bài còn lại tương tự
Bài 1:
a) \(\left(2x-3\right)\left(x^2+0,75\right)=0\)
b)\(\frac{x+3}{-2}=\frac{-8}{x+3}\)
c) \(\left(\frac{1}{2}\cdot x-1\right)^2=\frac{16}{81}\)
d) \(2^{x+1}-2^x=8\)
e) \(\frac{2x-3}{5}=\frac{4x+3}{-7}\)
BÀI 2:
a) x:y:z=3:(-5):7 và 2z-3y-x=4
b) 3x=5y=6z và x-y-2z=4
c)$\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}$ và 2x+y-z=-14
d)$\frac{x}{2}=\frac{y}{3}=\frac{z}{5}$ và 3y+x-z=4
Bài 1:Tìm giá trị của các biểu thức sau:
a) B=2|x| - 3|y| với \(x=\frac{1}{2},y=-3\)
b| C=2|x-2| - 3|1-x| với x=4
Bài 2:Rút gọn các biểu thức sau:
a) |a|+a b) |a|-a c)|a|.a d) |a|:a e)3(x-1)-2|x+3|
Bài 3:
a)Tìm x biết: |2x+3|=x+2
b)Tìm giá trị nhỏ nhất của A=|x-2006|+|2007-x| khi x thay đổi
Bài 4:Tìm x biết:
a) \(\text{|}x-\frac{1}{3}\text{|}+\frac{4}{5}=\text{|}\left(-3,2\right)+\frac{2}{5}\text{|}\)
b) \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
Bài 5: Cho
\(A=\frac{1,11+0,19-1,3.2}{2,06+0,54}-\left(\frac{1}{2}+\frac{1}{3}\right):2\)
\(B=\left(5\frac{7}{8}-2\frac{1}{4}-0,5\right):2\frac{23}{26}\)
a)Rút gọn A và B
b)Tìm x \(\in\)Z để A<x<B
Bài 6:Tìm giá trị nhỏ nhất của biểu thức
M= |x-2002|+|x-2001|
Bài 7:Tìm x và y biết:
a) 2|2x-3|=\(\frac{1}{2}\)
b) 7,5-3|5-2x|= -4,5
c) |3x-4|+|5y+5|=0
d) |x-7|+2x+5=6
Bài 8:Tìm giá trị nhỏ nhất của biểu thức
a) A=3,7+|4,3-x|
b) B= |3x+8,4|-24,2
c) C= |4x-3|+|5y+7,5|+17,5
Bài 9:Tìm giá trị lớn nhất của biểu thức
a) D=5,5-|2x-1,5|
b) E= -|10,2-3x|-14
c) F=4-|5x-2|-|3y+12|
Bài 1 và 2 dễ rồi bạn tự làm được
Bài 3 :
\(a)\) Ta có :
\(\left|2x+3\right|\ge0\)
Mà \(\left|2x+3\right|=x+2\)
\(\Rightarrow\)\(x+2\ge0\)
\(\Rightarrow\)\(x\ge-2\)
Trường hợp 1 :
\(2x+3=x+2\)
\(\Leftrightarrow\)\(2x-x=2-3\)
\(\Leftrightarrow\)\(x=-1\) ( thoã mãn )
Trường hợp 2 :
\(2x+3=-x-2\)
\(\Leftrightarrow\)\(2x+x=-2-3\)
\(\Leftrightarrow\)\(3x=-5\)
\(\Leftrightarrow\)\(x=\frac{-5}{3}\) ( thoã mãn )
Vậy \(x=-1\) hoặc \(x=\frac{-5}{3}\)
Chúc bạn học tốt ~
Bài 1: Tìm x:
a)\(\frac{3}{4}+\frac{2}{5}x=\frac{29}{60}\)
b)\(1\frac{3}{4}\cdot x+1\frac{1}{2}=-\frac{4}{5}\)
c)\(\frac{11}{12}-\left(\frac{2}{5}+x\right)=\frac{2}{3}\)
d)\(2\frac{3}{4}x=3\frac{1}{7}:0,01\)
e)\(2x\cdot\left(x-\frac{1}{7}\right)=0\)
\(a)\frac{3}{4}+\frac{2}{5}x=\frac{29}{60}\)
\(\)TỰ LÀM NHA HIHI
MI SUỐT NGÀY NGỒI MÁY TÍNH LƯỚT FACE, LÚC NÀO ĐI QUA CŨNG THẤY
Bài 1:Cho a,b,c,d là các số dương. Chứng minh rằng :
\(\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}+\frac{b^4}{\left(b+c\right)\left(b^2+c^2\right)}+\frac{c^4}{\left(c+d\right)\left(c^2+d^2\right)}+\frac{d^4}{\left(d+a\right)\left(d^2+a^2\right)}\ge\frac{a+b+c+d}{4}\)
Bài 2:Cho \(a>0,b>0,c>0\).\(CM:\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Bài 3: a) Cho x,y,>0. CMR:\(\frac{x^3}{x^2+xy+y^2}\ge\frac{2x-y}{3}\)
b) Chứng minh rằng\(\Sigma\frac{a^3}{a^2+ab+b^2}\ge\frac{a+b+c}{3}\)
Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)
Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\); \(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)
Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)
\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)
Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*
\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)
\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)
Đẳng thức xảy ra khi a = b = c
P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:
1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)
\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)
bài 2 xem có ghi nhầm ko
3a biến đổi tí là xong
b tuong tự bài 1
Bài 1:Tìm x,y nguyên dương
\(x^2+3y^2+4xy=2x-6y+24\)
Bài 2:Cho 3 điểm A(7;2); B(2;8); C(8;4)
trên mặt phẳng tọa độ hãy xác định đường thẳng (d) đi qua A sao cho B và C nằm về 2 phía của đường thẳng (d) và cách đều đường thẳng (d)
Bài 3:Cho B=\(\left(-x^2+x-1\right):\sqrt{\left(x^2+\frac{1}{x^2}\right)+2\left(x+\frac{1}{x}\right)^2-3}\)
a)Rút gọn B
b)Tìm GTNN của B
Bài 4:Cho E=\(\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
a)rút gọn E
b)Tìm GTNN của E
c)Tìm x để giá trị của \(\frac{2\sqrt{x}}{E}\) là số nguyên
Bài 5:Cho D=(\(\frac{x+\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}+\frac{1}{x+1}\)):(\(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{x\sqrt{x}-x+\sqrt{x}-1}\))
a)Rút gọn D
b)Tính D khi x=\(\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
Bài 1 :
Cho 3 tỉ số bằng nhau \(\frac{a}{b+c};\frac{b}{c+a};\frac{c}{a+b}\) . Tìm giá trị của mỗi tỉ số đó
Bài 2 :
Cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) với \(a;b;c;d\ne0\). Chứng minh rằng \(\frac{a}{b}=\frac{c}{d}\)hoặc \(\frac{a}{b}=\frac{d}{c}\)
Bài 3 :
Tính tổng \(A=\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3+...+\left(-7\right)^{2007}\). Chứng minh rằng \(A⋮43\)
Bài 4 :
Tìm GTNN của biểu thức : \(A=x\left(x+2\right)+2\left(x-\frac{3}{2}\right)\)
Bài 5 :
Cho \(A=1-\frac{3}{4}+\left(\frac{3}{4}\right)^2-\left(\frac{3}{4}\right)^3+\left(\frac{3}{4}\right)^4-\left(\frac{3}{4}\right)^5+...-\left(\frac{3}{4}\right)^{2009}+\left(\frac{3}{4}\right)^{2010}\)
Chứng minh A không phải là số nguyên
Bài 1:
Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c
<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1
Sai rồi em ơi 2 trường hợp cơ
+, bằng -1
+, bằng 2
Bài 1 thực hiện phép tính
a)\(\frac{45}{19}-\left(\frac{1}{2}+\left(\frac{1}{3}+\left(\frac{1}{4}\right)^{-1}\right)^{-1}\right)^{-1}.\)
b) \(\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^{10}.6^{19}-7.2^{29}.27^6}.\)
Bài 2. tìm x, biết:
a) 2(x-1) - 3(2x+2) - 4(2x+3) =16
b) \(3\frac{1}{2}:\left|2x-1\right|=\frac{21}{22}\)
c) |x2+|x-1|| = x2+2
Bài 3. Chứng minh rằng số có dạng abcabc luôn chia hết cho 11
Bài 4.tính:
a) A = \(\left(\frac{0,4-\frac{2}{9}+\frac{2}{11}}{1,4-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-0,25+\frac{1}{5}}{1\frac{1}{6}-0,875+0,7}\right):\frac{2012}{2013}\)
b) B =\(4.\left(-\frac{1}{2}\right)^2-2.\left(-\frac{1}{2}\right)^2+3.\left(-\frac{1}{2}\right)+1\)
c) C =\(\frac{1}{2}:\left(-1\frac{1}{2}\right):1\frac{1}{3}:\left(-1\frac{1}{4}\right):1\frac{1}{5}:\left(-1\frac{1}{6}\right):...:\left(-1\frac{1}{100}\right)\)
d) D =\(\frac{4^6.9^5+6^9.120}{-8^4.3^{12}+6^{11}}\)
Bài 1:tính nhanh
a. 6\(\frac{4}{5}\)-\(\left(1\frac{2}{3}+3\frac{4}{5}\right)\)
b. \(7\frac{5}{9}-\left(2\frac{3}{4}+3\frac{5}{9}\right)\)
c. \(\frac{-3}{5}.\frac{5}{7}+\frac{-3}{5}.\frac{3}{7}+\frac{-3}{5}.\frac{6}{7}\)
d. \(\frac{1}{3}.\frac{4}{5}+\frac{1}{3}.\frac{6}{5}-\frac{4}{3}\)
Bài 2: tìm x
a. \(\frac{2}{3}+\frac{1}{3}:x=\frac{3}{5}\)
b. \(x+30\%x=-1,3\)
c. \(3\frac{1}{3}x+16\frac{3}{4}=-13,25\)
d. \(\left(2\frac{4}{5}x-50\right):\frac{2}{3}=51\)
e. |2x-1|=\(\left(-4\right)^2\)
gấp nha các bạn !!!!!!!!