\(\frac{x}{y+z+1}\)=\(\frac{y}{z+x+1}\)=\(\frac{z}{x+y-2}\)=x+y+z
Tìm x,z,y
Thaks các bạn nhiều nha
1.Cho các số thực x, y, z thỏa mãn:
\(\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}\)
Tính \(P=\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}\)
* các bạn giúp mk nha * ( 2 bạn trả lời dưới này bị sai rùi )
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}\Rightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{y+z+z+x+x+y}{x+y+z}\)\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=2+2+2=6\)
Vì bài toán không yêu cầu tìm x; y; z nên ta có cách giải ngắn gọn thế thôi nha bn.
Kết quả bằng 6 nha
k tui nha
Thanks
đáp số hai bạn này đúng mà bạn sai chỗ nào đâu
Tìm x,y,z biết:
a) \(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=x+y+z\)
b) \(\frac{y+z+1}{x}=\frac{z+x+1}{y}=\frac{x+y-2}{z}=\frac{1}{x+y+z}\)
c)\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
(mong các bạn giải giúp mình, nếu bạn không giả được hết thì có thể giải từng ý, cảm ơn trước nha)
Các bạn ơi giúp mình nha!!!!
Cho \(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}=2018\) . Tính \(\frac{y^2}{x+y}+\frac{z^2}{y+z}+\frac{x^2}{z+x}?\)
Cho 3 số \(x,y,z\ne0\)thỏa mãn \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Tính P = \((1+\frac{y}{x})\times(1+\frac{y}{z})\times(1+\frac{z}{x})\)
Các bạn giúp mk với nha , ngày mai mk phải nộp bài này rồi , nhớ ghi rõ cách giải nha
THANKS!!!
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
Do đó :
\(\frac{y+z-x}{x}=1\)\(\Rightarrow\)\(2x=y+z\)
\(\frac{z+x-y}{y}=1\)\(\Rightarrow\)\(2y=x+z\)
\(\frac{x+y-z}{z}=1\)\(\Rightarrow\)\(2z=x+y\)
Suy ra :
\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{x}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)
Vậy \(P=8\)
Đề hơi sai
Cho các số thực x,y,z thỏa mãn x+y+z=1 và \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)
(x # -y ; y #-z ; z # -x)
GT cùa BT \(\frac{x^2}{y+x}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)là...
Các bạn giúp mình nhé mình đang cần gấp lắm.. Thanks!!! (Đáp án cũng dc)
cậu vào đường link này sẽ rõ:http://olm.vn/hoi-dap/question/794605.html
cho hỏi nek
tìm x,y,z
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{2}=\frac{1}{x+y+z}\)
thanks nhiều nha
Tìm x,y,z biết \(\frac{x}{y+z+1}\)=\(\frac{y}{x+z+1}\)=\(\frac{z}{x+y-2}\)= X + Y + Z
Giải chi tiết rõ ràng cách tìm x,y,z ra nha các bạn
Ai nhanh mk tick cho !!!
Cho x+y+z=0 và x khác y khác z.Tính
\(A=\frac{x^2}{x^2-y^2-z^2}+\frac{y^2}{y^2-z^2-x^2}+\frac{z^2}{z^2-x^2-y^2}\)
\(B=\frac{1}{x^2+y^2-z^2}+\frac{1}{y^2+z^2-x^2}+\frac{1}{x^2+z^2-y^2}\)
Các bạn giúp mình nhanh với
1.Tính:
\(x:\frac{x-1}{2}-\frac{\left(x-1\right)\left(x^2+4x+1\right)}{2x^2+2x}.\frac{-4x}{\left(x-1\right)^2}-\frac{4x^2}{x^2-1}\)
2.Chứng minh đẳng thức sau( giả sử đẳng thức có nghĩa):
\(\frac{y-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-x}{\left(y-z\right)\left(y-x\right)}+\frac{x-y}{\left(z-x\right)\left(z-y\right)}=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}\)
Các bạn giúp mình với!