Cho M= 1/2^2+1/2^4+1/2^6+1/2^8+..........+1/2^98+1/2^100. Chứng tỏ M <\(\frac{1}{3}\)
Cho M=( 1+1/2+1/3+1/4+...+1/98).2.3.4...98
Chứng tỏ M chia hết cho 99
tao có:
1/2.3.4.....98.M=(1+1/98)+(1/2+1/97)+...+(1/49+1/50)
1/2.3.4.....98.M=99/1.98+99/2.97+...+99/49.50
gọi các thừa số phụ cua tử m là:n1,n2,...n49
suy ra M=99.(n1+n2+...+n49).2.3.....98/2.3.....98
M=99.(n1+n2+...+n49) chia het cho 99 suy ra đéo phải chứng minh
cho:
m = 1/2*3/4*5/6*....*99/100
n = 2/3*4/5*6/7*...*100/101
a, Chứng tỏ m<n
b,Tìm m*n
c, chứng tỏ m<1/10
cho S=1-4^2+4^4-4^6+...+4^96-4^98. Tính S, từ đó chứng tỏ 4^100 chia cho 17 dư 1
Cho biểu thức:
A =1/2^2+1/4^2+1/6^2+.....+1/96^2+1/98^2.
Chứng tỏ A<1/2
\(A=\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{96^2}+\frac{1}{98^2}\)
\(A< \frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{95.97}+\frac{1}{97.99}\)
\(A< \frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{95}-\frac{1}{97}+\frac{1}{97}+\frac{1}{99}\)
\(A< 1-\frac{1}{99}\)
\(A< \frac{98}{99}\)
chứng tỏ 1*2*3*4*5*6*7*8*...*100 chia hết cho 1/2
Chia cho 1/2 tức là nhân với 2
(1x2x3x4x...x100):1/2=(1x2x3x...x100)x2
Kiểu gì cũng ra số tự nhiên
Vậy nó chia hết cho 1/2
Cho biểu thức M =(1+1/2+1/3+1/4+...+1/100)×2×3×4×5×…×100
Chứng tỏ rằng M chia hết cho 101
Www duoccvvvv làm gì để giảm cân nhanh và an toàn cho người ta có thể học được cách điệu với áo dài đau đớn đau đầu sốt ói mửa và tiêu thụ sản phẩm của mình và người
Cho M=(1+1/2+1/3+...+1/98).2.3.4 ... 98. Chứng tỏ rằng M chia hết cho 99.
Tính một lúc ta được M=1+2+3+...+98
\(M=\left(1+98\right)+\left(2+97\right)+...\left(49+50\right)\)
\(M=99+99+99+...+99\)
Vậy M chia hết cho 99
Ai tích mk mk tích lại cho
Tìm 2M rồi trừ cho M sẽ ra kết quả
Mình giải cho đợi tí
M=( 1+98+2+97+3+96+.....+49+50)
M=99+99+99+99+...+99
vậy M chia hết cho 99
ai tích mình tích lí nhà
Cho M 1 1 2 1 3 ... 1 98 .2.3.4 ... 98. Chứng tỏ rằng M chia hết cho 97
1.
a, chứng tỏ
1/2^2+1/3^2+...+1/2017^2<1
b,1/4+1/16+1/36+1/64+1/100+1/144+...+1/10000<1/2
c,cho A=1/2^2+1/3^2...+1/9^2
chứng tỏ:2/5<a<8/9
d,chứng tỏ:A=1+1/2^2+...+1/100^2<1/3/4
e,chứng tỏ:1/2^2+1/3^2+...+1/100^2<1
a, Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2017^2}< \frac{1}{2016.2017}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2017^2}>\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2016.2017}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}=1-\frac{1}{2017}< 1\)Vậy...
b, Đặt A = \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}\)
\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)
\(A=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
Đặt B = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};.....;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)
Thay B vào A ta được:
\(A< \frac{1}{4}\left(1+1\right)=\frac{1}{4}.2=\frac{1}{2}\)
Vậy....
c, Ta có: \(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};....;\frac{1}{9^2}>\frac{1}{9.10}\)
\(\Rightarrow A>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)(1)
Lại có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};....;\frac{1}{9^2}< \frac{1}{8.9}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)(2)
Từ (1) và (2) suy ra \(\frac{2}{5}< A< \frac{8}{9}\)(đpcm)
d, chắc là đề sai
e, giống câu a