cho n thuộc N, chứng tỏ rằng n2 + n + 1 không chia hết cho 4
MÌNH CẦN GẤP LẮM. MONG CÁC BẠN GIÚP
Chứng tỏ rằng với n thuộc N thì 10n + 18.n-1 chia hết cho 27
Mọi người nhanh lên giúp mk nha mk đang cần gấp lắm
\(TH1;n=3k\)\(\Rightarrow10^n+18n-1=\)\(10^{3k}+18.3k-1=1000^k+54k-1\equiv1+54k-1\left(mod27\right)\equiv0\left(mod27\right)\left(1\right)\)
\(TH2;n=3k+1\Rightarrow10^n+18n-1=10^{3k+1}+18.\left(3k+1\right)-1\)\(=10^{3k}.10+18.\left(3k+1\right)-1=1000^k.10+54k+18-1\)\(\equiv1.10+54k+17\left(mod27\right)\equiv54k+27\left(mod27\right)\equiv0\left(mod27\right)\left(2\right)\)
\(TH3;n=3k+2\Rightarrow10^n+18n-1=10^{3k+2}+54k+36-1\)\(=1000^{3k}.100+54k+35\equiv1.100+54k+35\left(mod27\right)\)\(\equiv54k+135\left(mod27\right)\equiv0\left(mod27\right)\left(3\right)\)\(Từ\left(1\right);\left(2\right);\left(3\right)\Rightarrow10^n+18n-1⋮27,\forall n\in N\left(ĐPCM\right)\)
10n+18n-1=10n-1+18n=99.....9(n chữ số 9)+18n
=9.(111....1(n chữ số 1)+2n)
xét --------------------------------=11...1-n+3n
dễ thấy tổng các chữ số của 11....1(n chữ số 1) là n
=>11....1-n chia hết cho 3
=>11.....1-n+3 chia hết cho 3
=>10n+18n-1 chia hết cho 27
các bạn jup mik nha , mik đng cần gấp
Chứng minh rằng :
1a) 100a + 20b chia hết cho 20
1b) abab chia hết cho ab
3 ) chứng tỏ rằng : ( n-1) . n . ( n + 1 ) chia hết chó 6 Với n lớn hơn hoặc bằng 1
Mong các bạn jup đỡ
1/
a/ \(100+20b=20\left(5+b\right)\) chia hết cho 20
b/ \(abab=10.ab+ab=11.ab\) chia hết cho ab
3/ Tích trên là tích của 3 số tự nhiên liên tiếp
+ Nếu n chẵn do n>=1 => n chia hết cho 2 => tích trên chia hết cho 2
+ Nếu n lẻ và n chia 2 dư 1 thì n-1 và n+1 chia hết cho 2 => tích trên chia hết cho 2
=> tích trên chia hết cho 2 với mọi n
+ Nếu n chia hết cho 3 thì tích trên chia hết cho 3
+ Nếu n chia 3 dư 1 thì n-1 chia hết cho 3 => tích chia hết cho 3
+ Nếu n chia 3 dư 2 thì n+1 chia hết cho 3 => tích chia hết cho 3
=> Tích trên chia hết cho 3 với mọi n
Mà 2 và 3 là hai số nguyên tố cùng nhau => tích trên chia hết cho 2x3 tức là chia hết cho 6
chứng minh rằng :B=[n(n^2-2)^2-n^3]chia hết cho 10 với mọi n thuộc Z
mong các bạn giúp đỡ mk vs mk đang cần gấp
B=n(n4-4n2+4)-n3 = n5-4n3+4n-n3=n5-5n3+4n=n(n4-5n2+4)=n(n4-n2-4n2+4)=n[n2(n2-1)-4(n2-1)]=n(n2-1)(n2-4)=n(n-1)(n-2)(n+1)(n+2)
=> B=(n-2)(n-1).n(n+1)(n+2)
Nhận thấy, các số (n-2); (n-1); n; (n+1) và (n+2) là 5 số tự nhiên liên tiếp nên ít nhất phải có 2 số là số chẵn và 1 số phải có tận cùng là 5 hoặc 0
=> Số tận cùng của B là 0
=> B chia hết cho 10 với mọi n thuộc Z
Bài 1: Chứng minh rằng : 22 + n+2 chia hết cho 2 và không chia hết cho 5
Bài 2 : Cho a€ N* , n€ N* , biết a2 chia hết cho 5 . Chứng minh rằng : a2 +150 chia hết cho 25
Mình đang cần gấp mong các bạn giải nhanh giúp mình.
chứng tỏ:
111.....1 (n chữ số 1) -n chia hết cho 9 với mọi n thuộc N
giúp mình với, mình cần gấp lắm
Chứng minh : n.(n + 1 ) . ( 2n + 1 ) chia hết cho 3 với n là số tự nhiên.
Mong các bạn giải đầy đủ và chi tiết giúp mình nhé! Mình đang cần gấp lắm !
+ Nếu n chia hết cho 3 thì tích chia hết cho 3
+ Nếu n chia 3 dư 1 thì 2n chia 3 dư 2 => 2n+1 chia hết cho 3 => tích chia hết cho 3
+ nếu n chia 3 dư 2 => n+1 chia hết cho 3 => tích chia hết cho 3
=> tích chia hết cho 3 với mọi n
Chứng tỏ rằng vs mọi n thuộc N thì 8n + 111...1 ( n chữ số ) chia hết cho 9
GIÚP MIK NHA , AI NHANH MIK KB VÀ KÍCH , CẢM ƠN TRƯỚC , MIK CẦN GẤP LẮM , GIẢI CÓ LỜI GIAIRA CHO MIK NHA
Cho n€ N. Chứng minh rằng : n2+n+1 không chia hết cho 4 và không chia hết cho 5.
Mình cần gấp mong cac bạn trả lời nhanh nhé!
n^2 + n + 1 = n( n + 1 ) + 1
n( n + 1 ) là tích của 2 số tự nhiên liên tiếp nên gồm 1 lẻ , 1 chẵn => n(n + 1 ) chẵn <=> n( n + 1 ) + 1 lẻ .
Mà số lẻ thì không chia hết cho 2 .
=> n( n + 1 ) + 1 không chia hết cho 2 . Mà 4 = 2^2
=> n( n + 11 ) + 1 cũng không chia hết cho 4
Vì n( n + 1 ) là tích của hai số tự nhiên liên tiếp nên sẽ có tận cùng là 0 ; 2 ; 6
=> n( n + 1 ) + 1 có tận cùng là 1 ; 3 ; 7
Vậy n( n + 1 ) + 1 không chia hết cho 5
n^2 + n + 1 = n( n + 1 ) + 1
n( n + 1 ) là tích của 2 số tự nhiên liên tiếp nên gồm 1 lẻ , 1 chẵn => n(n + 1 ) chẵn <=> n( n + 1 ) + 1 lẻ .
Mà số lẻ thì không chia hết cho 2 .
=> n( n + 1 ) + 1 không chia hết cho 2 . Mà 4 = 2^2
=> n( n + 11 ) + 1 cũng không chia hết cho 4
Vì n( n + 1 ) là tích của hai số tự nhiên liên tiếp nên sẽ có tận cùng là 0 ; 2 ; 6
=> n( n + 1 ) + 1 có tận cùng là 1 ; 3 ; 7
Vậy n( n + 1 ) + 1 không chia hết cho 5
Gọi A = n2 +n +1 (n∈N). Chứng tỏ rằng : A không chia hết cho 2
Bn nào giúp mình nha!!!!!!!
\(A=n\left(n+1\right)+1\)
Vì n(n+1) chia hết cho 2
nên A ko chia hết cho 2