Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
XPer Miner
Xem chi tiết
alibaba nguyễn
8 tháng 11 2017 lúc 10:12

\(A=\frac{1^2}{1.3}+\frac{2^2}{3.5}+...+\frac{1006^2}{2011.2013}\)

\(\Leftrightarrow4A=\frac{2^2.1^2}{2^2-1}+\frac{2^2.2^2}{4^2-1}+...+\frac{2^2.1006^2}{2012^2-1}\)

\(=1006+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2011.2013}\right)\)

\(=1006+\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2011}-\frac{1}{2013}\right)\)

\(=1006+\frac{1}{2}\left(1-\frac{1}{2013}\right)=\frac{2026084}{2013}\)

\(\Rightarrow A=\frac{506521}{2013}\)

Nguyen Thi Ngoc Anh
Xem chi tiết
Phạm Văn An
Xem chi tiết
Lê Tài Bảo Châu
28 tháng 4 2019 lúc 21:59

\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2011.2013}\right)\)

\(A=\frac{1}{2}.\left(1-\frac{1}{2013}\right)\)

\(A=\frac{1}{2}.\frac{2012}{2013}\)

\(A=\frac{1006}{2013}\)

KAl(SO4)2·12H2O
28 tháng 4 2019 lúc 22:00

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2011.2013}\)

\(A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2011}-\frac{1}{2013}\right)\)

\(A=\frac{1}{2}.\left(1-\frac{1}{2013}\right)\)

\(A=\frac{1}{2}.\frac{2012}{2013}\)

\(A=\frac{1006}{2013}\)

Trung Hiếu Nguyễn
28 tháng 4 2019 lúc 22:15

A = 1/1. x 1/3 + 1/3 x 1/5 + 1/5 x 1/7 x.....+1/2011 x 1/2013

A=1/1 x 1/2013(bạn triệt tiêu 1/3 ,1/5 ,1/7,1/2011 nha )

A =1/2013 

Bùi Thị Ngọc Yến Nhi
Xem chi tiết
Trà My
23 tháng 10 2016 lúc 20:38

Theo quy luật mà mình nhận thấy thì 20112 phải sửa thành 20122 bạn ạ!

Đặt \(A=\frac{1.3+2}{2^2}+\frac{2.4+2}{3^2}+\frac{3.5+2}{4^2}+...+\frac{2011.2013+2}{2012^2}\)

\(\Leftrightarrow A=\frac{2^2+1}{2^2}+\frac{3^2+1}{3^2}+\frac{4^2+1}{4^2}+...+\frac{2012^2+1}{2012^2}\)

\(\Leftrightarrow A=1+\frac{1}{2^2}+1+\frac{1}{3^2}+1+\frac{1}{4^2}+...+1+\frac{1}{2012^2}\)

\(\Leftrightarrow A=\left(1+1+1+...+1\right)+\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}\right)\)

\(\Leftrightarrow A=2011+\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}\right)\)

Đặt  \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}\)

Có: \(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2011.2012}\)

\(\Leftrightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(\Leftrightarrow B< 1-\frac{1}{2012}\)

\(\Rightarrow A=2011+B< 2011+1-\frac{1}{2012}\)

\(\Rightarrow A< 2012-\frac{1}{2012}< 2013\)

Ta có đpcm

Trần Cao Vỹ Lượng
Xem chi tiết
Ngô Hồng Nhung
10 tháng 4 2018 lúc 15:32

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2009.2011}\)

=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2009}-\frac{1}{2011}\)

=\(1-\frac{1}{2011}\)

=\(\frac{2010}{2011}\)

luuthianhhuyen
10 tháng 4 2018 lúc 15:40

\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}\frac{1}{5\cdot7}+...+\frac{1}{2009\cdot2011}\)

\(=\frac{1\cdot2}{2\cdot1\cdot3}+\frac{1\cdot2}{2\cdot3\cdot5}+\frac{1\cdot2}{2\cdot5\cdot7}+...+\frac{1\cdot2}{2\cdot2009\cdot2011}\)

\(=\frac{1}{2}\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{2009\cdot2011}\right)\)

\(=\frac{1}{2}\cdot\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{2009\cdot2011}\right)\)

\(=\frac{1}{2}\cdot\left(\frac{1}{1}-\frac{1}{2011}\right)\)= .......

Mình không chắc là đúng đâu nha

Yoona SNSD
Xem chi tiết
Girl Cute
Xem chi tiết
Kiệt Nguyễn
28 tháng 4 2019 lúc 8:01

\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2011.2013}\)

\(\Rightarrow2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2011.2013}\)

\(\Rightarrow2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2011}-\frac{1}{2013}\)

\(\Rightarrow2S=1-\frac{1}{2013}\)

\(\Rightarrow2S=\frac{2012}{2013}\)

\(\Rightarrow S=\frac{2012}{2013}\div2\)

\(\Rightarrow S=\frac{1006}{2013}\)

 Bạch Dương
28 tháng 4 2019 lúc 8:04

\(2S=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{2011\cdot2013}\)

\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2011}-\frac{1}{2013}\)

\(2S=1-\frac{1}{2013}\)

\(2S=\frac{2012}{2013}\)

\(S=\frac{2012}{2013}\div2=\frac{1006}{2013}\)

                                #Louis

Thái Lê Diệu Anh
28 tháng 4 2019 lúc 8:24

\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2011.2013}\)

   \(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2011.2013}\right)\)

   \(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2011}-\frac{1}{2013}\right)\)

   \(=\frac{1}{2}\left(1-\frac{1}{2013}\right)\)

    \(=\frac{1}{2}.\frac{2012}{2013}\)

   \(=\frac{1006}{2013}\)

Study well ! >_<

Yên Lê Thanh
Xem chi tiết
Cô bé đáng yêu
Xem chi tiết
headsot96
20 tháng 7 2019 lúc 16:11

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{2009.2011}=(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2009.2011}):2\)

\(=\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2009}-\frac{1}{2011}\right):2=\left(1-\frac{1}{2011}\right):2=\frac{1}{2}-\frac{1}{4022}=...\)

nguyễn tuấn thảo
20 tháng 7 2019 lúc 16:12

\(\frac{1}{2}\cdot\left(\frac{2}{1\cdot3}+\cdot\cdot\cdot+\frac{2}{2009\cdot2011}\right)\)

\(=\frac{1}{2}\cdot\left(1-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{2009}-\frac{1}{2011}\right)\)

\(=\frac{1}{2}\cdot\left(1-\frac{1}{2011}\right)\)

\(=\frac{1}{2}\cdot\frac{2010}{2011}\)

\(=\frac{1005}{2011}\)