Cho tam giác ABC vuông tại A tỉ số giữa đường cao và đường trung tuyến là 40 : 41 . biết độ dài cạnh huyền \(\sqrt{41}\). Tính hai cạnh góc vuông
Cho tam giác ABC vuông tại A, AB < AC , đường cao AH, trung tuyến AM. Biết AH = 40; AM = 41. Tính tỉ số độ dài 2 cạnh góc vuông AB và AC
Xét tam giác ABC vuông tại A có AM là trung tuyến => AM = BC/2
=> BC = 2.AM = 2.41 = 82
Tam giác ABC vuông tại A nên : S ABC = AB.AC/2
Lại có : AH là đường cao nên S ABC = AH.BC/2
=> AB.AC/2 = AH.BC/2
=> AB.AC = AH.BC = 40.82 = 3280
Áp dụng định lý pitago trong tam giác ABC vuông tại A ta có :
AB^2+AC^2 = BC^2 = 82^2 = 6724
<=> (AB+AC)^2 = AB^2+AC^2+2.AB.AC = 6724+2.3280 = 13284
<=> AB+AC = \(18\sqrt{41}\)
(AC-AB)^2 = AB^2+AC^2-2.AB.AC = 6724-2.3280 = 164
<=> AC-AB = \(2\sqrt{41}\)( VÌ AC > AB )
=> AB = \(8\sqrt{41}\); AC = \(10\sqrt{41}\)
=> AB/AC = \(\frac{8\sqrt{41}}{10\sqrt{41}}\)= 4/5
Tk mk nha
Cho tam giác ABC vuông tại A, đường cao AH, trung tuyến AM. Biết AH = 40 cm, AM = 41 cm, tính tỉ số độ dài hai cạnh góc vuông AB và AC.
Giúp mình với ~
Xét \(\Delta ABC\perp A\)ta có:
AM là trung tuyến ứng cạnh huyền BC
=> AM=BM=CM=41
Xét \(\Delta AHM\perp H\)ta có:
\(HM^2=AM^2-AH^2\left(pytago\right)\)
\(\Rightarrow HM^2=41^2-40^2=81\)
\(\Rightarrow HM=\sqrt{81}=9\)
Ta có: \(\hept{\begin{cases}BH=BM-HM=41-9=32\\CH=CM+HM=41+9=50\end{cases}}\)
Xét \(\Delta ABH,\Delta ABC\)có:
\(\widehat{AHB}=\widehat{CAB}\left(=90^o\right)\)
\(\widehat{B}:chung\)
\(\Rightarrow\Delta ABH\approx\Delta ABC\left(gg\right)\)
\(\Rightarrow\frac{AB}{BH}=\frac{BC}{BA}\Rightarrow BA^2=BH\cdot BC\)
Xét \(\Delta CHA,\Delta CAB\)có:
\(\widehat{CHA}=\widehat{CAB}\left(=90^o\right)\)
\(\widehat{C}:chung\)
\(\Rightarrow\Delta CHA\approx\Delta CAB\left(gg\right)\)
\(\Rightarrow\frac{AC}{CH}=\frac{BC}{AC}\Rightarrow AC^2=CH\cdot BC\)
Ta có:
\(\left(\frac{AB}{BC}\right)^2=\frac{BH\cdot BC}{HC\cdot BC}=\frac{BH}{HC}=\frac{32}{50}=\frac{16}{25}\)
Vậy \(\frac{AB}{BC}=\frac{16}{25}\)
:> hình dễ bn có thể tự vẽ:Đ vì mik ngại :>
Xét t/gABC_|_ A ta có:
AM là trung tuyến ứng vs cạnh huyền BC
=>AM=BM=CM=41
Lại xét t/gAHM_|_H theo định lý pi-ta-go ta có:
HM2=AM2-AH2
=>HM2=412-402=81
=>HM=\(\sqrt{81}\)=9
Ta có:
BH=BM-HM=41-9=32
CH=CM+HM=41+9=50
Xét t/gABH và t/gABC ta có:
^ABH=^ABC=90o
=>^B chung
=>t/gABH~t/gABC(g.g)
=>BA/BH=BC/BA=>BA2=BH.BC
Xét t/gCAB và t/g CHA ta có:
^CAB=^CHA=90o
=>^C chung
=>AC/AH=BC/AC=>AC2=HC.BC
=>(AB/AC)2=BH.BC/HC.BC=32/50=16/25
=> tỉ số hai cạnh góc AB/AC=16/25
2/cho tam giác ABC vuông tại A ,đường cao AH ,Trung tuyến AM
a) Biết BC=125cm , AB phần AC = 3 phần 4 Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền
b) Biết AH=42cm , AB:AC=3:7 .Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền
c) Biết AH=48cm , HB:HC=9:16 tính AB,AC,BC
d) Biết AH:AM=40:41 Tính tỉ số AB phần Ac
Cho tam giác ABC vuông tại A, AB < AC , đường cao AH, trung tuyến AM. Biết AH = 40; AM = 41. Tính tỉ số độ dài 2 cạnh góc vuông AB và AC
giải giúp mk vs
Cho tam giác ABC vuông tại A (AB < AC) đường cao AH. M là trung điểm của BC biết AH = 40 AM = 41 tính tỉ số độ dài 2 cạnh góc vuông
\(\Delta AHM\)co:
\(AM^2=AH^2+HM^2\)(AP dung dinh ly Pytago)
\(\Rightarrow41^2=40^2+HM^2\)
\(\Rightarrow HM^2=41^2-40^2=81\)
\(\Rightarrow HM=\sqrt{81}=9\)
Ti so do dai 2 canh goc vuong la:
\(\frac{AH}{HM}=\frac{40}{9}\)
HTDT
\(\Delta ABC\)vuông tại A , trung tuyến AM=41 nên MB=MC=41 ta tính được HM=9,HB=32,HC=50 .Xét \(\Delta ABH\)và \(\Delta ACH\)vuông tại H , ta có :\(^{AB^2=40^2+32^2=2624^2;AC^2=40^2+50^2=4100\Rightarrow\frac{AB^2}{AC^2}=\frac{2624}{4100}=\frac{16}{25}\Rightarrow\frac{AB}{AC}=\frac{4}{5}}\)
Bài 7. Cho tam giác ABC vuông tại A (AB < AC), đường cao AH, trung tuyến AM. Biết rằng AH = 4,8cm,
AM = 5cm. Tính độ dài cạnh AC?
Bài 8. Đường trung tuyến ứng với cạnh huyền của một tam giác vuông dài 25cm. Tỉ số hai hình chiếu của
hai cạnh góc vuông trên cạnh huyền là 16 : 9. Tính độ dài hai cạnh góc vuông
1/ cho tam giác ABC vuông tại A , có đường cao AH , phân giác AD biết BD=15cm Dc=20cm
Tính AH,AD làm tròn đến chữ số thập phân thứ 2
2/cho tam giác ABC vuông tại A ,đường cao AH ,Trung tuyến AM
a) Biết BC=125cm , AB phần AC = 3 phần 4 Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền
b) Biết AH=42cm , AB:AC=3:7 .Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền
c) Biết AH=48cm , HB:HC=9:16 tính AB,AC,BC
d) Biết AH:AM=40:41 Tính tỉ số AB phần Ac
3/Hình thang ABCD có AB//CD và hai đường chéo vuông góc . Biết BD=15cm và dường cao hình thang bằng 12cm .Tính diện tích hình thang ABCD
4/Cho tam giác ABC cân tại A có đường cao AH=32cm đường cao BK=38,4 cm
a) tính các cạnh của tam giác ABC
b) đường trung trục của AC cắt AH tai O tính OH
1)trong một tam giác vuông tỉ số giữa đường cao và trung tuyến xuất phát từ đỉnh góc vuông bằng 40:41.Tìm tỉ số độ dài các cạnh góc vuông của tan giác vuông đó
Trong 1 tam giác tỉ số giữa đường cao và đường trung tuyến xuất phát từ đỉnh góc vuông bằng \(\frac{40}{41}\) Tìm tỉ số độ dài cạnh góc vuông của tam vuông đó