Tam giác ABC vuông tại A có AM kà trung tuyến => AM = BC/2 = \(\sqrt{41}\)/ 2
Ta có: \(\frac{AH}{AM}=\frac{40}{41}\) => AH = \(\frac{40}{41}.\frac{\sqrt{41}}{2}=\frac{20\sqrt{41}}{41}\)
Đặt AB = c; AC = b
=> b.c = AH . BC = \(\frac{20\sqrt{41}}{41}.\sqrt{41}=20\)
Áp dụng ĐL Pi ta go có : b2 + c2 = BC2 = 41
=> (b + c)2 = b2 + c2 + 2bc = 41 + 2.20 = 81 => b + c = 9 (do b; c là độ dài đoạn thẳng nên b ; c > 0 ) => b = 9 - c
Thay vào b.c = 20 ta được (9 - c).c = 20 <=> c2 - 9c + 20 = 0
<=> (c-4)(c - 5) = 0 <=> c = 4 hoặc c = 5
c = 4 => b = 5
c= 5 => b = 4
Vậy 2 cạnh góc vuông là 4 và 5
Thế MR lazy hoặc ai cũng đc vì bài này cũng không khó
cho tam giac abc vuong tai a, duong cao ah
a,hay viet he thuc lien he giua duong cao va hinh chieu cua cac canh goc vuong tren canh huyen
b,tinh ah biet bh = 4cm;hc=9cm