Tìm GTLN của bt : Q= 27-2x/12-x
Tìm GTLN của bt C =\(\frac{27-2x}{12-x}\)với x nguyên
Tìm các GT nguyên của x để các BT sau có GTLN
a.\(\frac{1}{7-x}\)
b.\(\frac{27-2x}{12-x}\)
Nhanh nha mn
Tìm GTLN của M=27-2x/12-x (x thuộc Z)
Tìm GTLN :
\(P=\frac{27-2x}{12-x}\)
ta có
\(P=\frac{27-2x}{12-x}\)
\(P=\frac{\left(12-x\right)+\left(12-x\right)+3}{12-x}\)
\(P=2+\frac{3}{12-x}\)
để P lớn nhất thì \(\frac{3}{12-x}\) phải lớn nhất
=> 12-x phải bé nhất (hay 12-x=1)
=> x=12
Bây giờ thay vào sẽ có kết quả là 5
=> P lớn nhất bằng 5
tìm x , để có gtln
a,\(\frac{27-2x}{12-x}\)
b.\(\frac{14-x}{4-x}\)
\(A=\frac{27-2x}{12-x}=\frac{24-2x}{12-x}+\frac{3}{12-x}=2+\frac{3}{12-x}\)
Câu b bạn tự làm nhé
Chúc bạn hok tốt :>
Tìm GTLN 27-[2x/(12-x)] với x thuộc Z
TÌM GTLN của biểu thức : Q=\(\dfrac{27-2x}{12-x}\) ( x\(\in\)Z)
Vì Q có GTLN => \(\dfrac{27-2x}{12-x}\)có GTLN
Ta có : \(\dfrac{27-2x}{12-x}\)= (*)\(\dfrac{24-2x+3}{12-x}=\dfrac{24-2x}{12-x}+\dfrac{3}{12-x}=2+\dfrac{3}{12-x}\)
=> Để Q có GTLN => \(\dfrac{3}{12-x}\)có GTLN
=>12-x có GTNN (12-x thuộc N khác 0)
=>12-x = 1
<=>x = 12-1=11
Thay x vào (*), ta có:
Q=\(\dfrac{27-2x}{12-x}=\dfrac{27-2.11}{12-11}=\dfrac{27-22}{1}=5\)
1 tìm x,y\(\in\)Z thỏa mãn x+y=xy=2
2 tìm GTLN của Q=\(\frac{27-2x}{12-x}\)(x\(\in\)Z)
3 tìm p nguyên tố sao cho p+1,p+5 cùng là số nguyên tố
BT: Tìm GTNN và GTLN:
a) A= \(\frac{x^2-2x-2}{x^2+x+1}\)
b) \(A=\frac{8x+3}{4x^2+1}\)
c) \(A=\frac{27-2x}{x^2+9}\)
Gợi ý làm phần a) , phần còn lại tương tự nha
\(A=\frac{x^2-2x-2}{x^2+x+1}\)
\(\Leftrightarrow
A\left(x^2+x+1\right)=x^2-2x-2\)
\(\Leftrightarrow
Ax^2+Ax+A-x^2+2x+2=0\)
\(\Leftrightarrow
x^2\left(A-1\right)+x\left(A+2\right)+A+2=0\)
Xét \(\Delta=\left(A+2\right)^2-4\left(A-1\right)\left(A+2\right)=A^2+4A+4-4\left(A^2+A-2\right)=-3A^2+12\ge0\)
\(\Leftrightarrow-2\le A\le2\)
Vậy MinA=-2 tại x=0, MaxA=2 tại x=-2
Chúc bạn học tốt
1. Tìm GTNN của bt:
Q=|7x-5y|+|2z-3x|+|xy+yz+zx-2000|
2. Cho (a-b)^2 +6ab=36. Tìm GTLN của bt:
A=a.b
3. Tìm GTLN của các bt sau vs x thuộc Z :
a/ A=17/13-x
b/B = 32-2x/11-x
Giúp mình vs mai mk cần rồi . Mk tick cho!!!
1/ Câu hỏi của Jey - Toán lớp 7 - Học toán với OnlineMath
2/ \(\left(a-b\right)^2+6ab=36\Rightarrow6ab=36-\left(a-b\right)^2\le36\Rightarrow ab\le\frac{36}{6}=6\)
Dấu "=" xảy ra khi \(\orbr{\begin{cases}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{cases}}\)
Vậy abmax = 6 khi \(\orbr{\begin{cases}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{cases}}\)
3/
a, Để A đạt gtln <=> 17/13-x đạt gtln <=> 13-x đạt gtnn và 13-x > 0
=> 13-x = 1 => x = 12
Khi đó \(A=\frac{17}{13-12}=17\)
Vậy Amax = 17 khi x = 12
b, \(B=\frac{32-2x}{11-x}=\frac{22-2x+10}{11-x}=\frac{2\left(11-x\right)+10}{11-x}=2+\frac{10}{11-x}\)
Để B đạt gtln <=> \(\frac{10}{11-x}\) đạt gtln <=> 11-x đạt gtnn và 11-x > 0
=>11-x=1 => x=10
Khi đó \(B=\frac{10}{11-10}=10\)
Vậy Bmax = 10 khi x=10