Tính
\(\left(7^{2005}+7^{2004}\right):7^{2004}\)
\(\left(11^{2003}+11^{2002}\right):11^{2002}\)
A=\(\dfrac{1}{4.9}+\dfrac{1}{9.14}+\dfrac{1}{14.19}+...+\dfrac{1}{44.49}+\left(\dfrac{1-3-5-7-...-49}{89}\right)\)
B=\(\dfrac{212.3^5.4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^4.49^2}{\left(125.71^3+59.14^3\right)}\)
C=\(\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}-\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}-\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}-\dfrac{3}{2004}}\)
D=\(\left(\dfrac{1,5+1-0,75}{2,5+\dfrac{5}{3}-1,25}\right)+\left(\dfrac{0,375-0,3+\dfrac{3}{11}+\dfrac{3}{12}}{-0,625+0,5-\dfrac{5}{11}-\dfrac{5}{12}}\right):\dfrac{1890}{2005}+115\)
E=13+23+...+103=3025
Tính F=23+42+63+...+203=?
A) ( 7^2005 + 7^2004): 7^2001
B) ( 11^2003 + 11^2002): 7^2002
C) ( 5^2001 - 5^2000): 5 ^ 200
D) ( 7^2005 + 7^2004): 7^2001
Giải rõ dùm em vs ạ
Em đang cần gấp lắm nên mong mấy ac giúp vs
1+(-6)+11+(-16)+......+(-996)+1001
1+(-2)+(-3)+4+5+(-6)+(-7)+8+....+2001+(-2002)+(2003)+2004+2005
Tính giá trị của các biểu thức sau 1) \(A=1+2+2^2+...+2^{2015}\) 2) \(B=\left(\dfrac{1}{4}-1\right)\cdot\left(\dfrac{1}{9}-1\right)\cdot\left(\dfrac{1}{16}-1\right)\cdot\cdot\cdot\cdot\cdot\left(\dfrac{1}{400}-1\right)\) 3) \(C=\left(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+\dfrac{1}{14\cdot19}+...+\dfrac{1}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\) 4) \(D=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\) 5) \(E=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}-\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}-\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}-\dfrac{3}{2004}}\) 6) Cho 13+23+...+103=3025 Tính S= 23+43+63+...+203
Tính :
P=\(\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
Q=\(\left(\frac{1,5+1-0,75}{2,5+\frac{5}{3}-1,25}\right)+\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{-0,625+0,5-\frac{5}{11}-\frac{3}{12}}:\frac{1890}{2005}+115\)
Giúp mình với mình đang cần gấp, thanks các bạn nhìu
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{3004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
\(\Rightarrow P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)
\(\Rightarrow P=\frac{1}{5}-\frac{2}{3}\)
\(\Rightarrow P=\frac{3}{15}-\frac{10}{15}\)
\(\Rightarrow P=\frac{-7}{15}\)
Vậy \(P=\frac{-7}{15}\)
Tính
S = 0-1=2-3+4-5+6-7+...+2004-2005
S = 1-3+5-7+9-11+...+2005-2007
S = 1-2+3-4+5-6+.. + 2001 - 2002 + 2003
S = 2194.21952195+2195.21942194
Tinh hợp lý các biểu thức sau:
F=1-2+3-4+....+2009+2010
G=0-2+4-6+...+2010-2010
H=13-12+11+10-9+8-7-6+5-4-3+2-1
I=1-2-3+4+5-6-7-8+9...+2001-2002-2003+2004+2005+2006
J=1+2-3-4+6+6-7-8+9+...+2002-2003-2004+2005+2006
tính : a)1-2-3+4+5-6-7+8+...+2001-2002-2003+2004
b)1+2-3-4+5+6-7-8+9+...+2002-2003-2004+2005+2006
a) 1-2-3+4+5-6-7+8+...+2001-2002-2003+2004
S = (1+2-3+4) + (5+6-7-8) + ... + (2001+2002-2003-2004) + (2005+2006)
S = (-4) + (-4) + ... + (-4) + (2005+2006)
dãy S có 2004 - 1 : 1 + 1 = 2004 số hạng
dãy S có 2004 : 4 = 501 chữ số (-4)
do đó S = -4. 501 = -2004
S = -2004 + (2005+2006)
S = -2004 + 4011
S = 2007
b) tương tự nhé!!
675676587689689
a) Nhóm 4 số hạng liên tiếp từ đầu dãy:
A = (1-2-3+4)+(5-6-7+8)+(9-10-11+12)+ ...+(2001-2002-2003+2004) = 0
b) Nhóm 4 số hạng liên tiếp bắt đầu từ số thứ 2:
B = 1+(2-3-4+5)+(6-7-8+9)+...+(2002-2003-2004+2005)+2006 = 1+2006 = 2007.
chết cho mk xin lỗi mk làm câu b) mà kéo nhầm câu a đó bn!!
sorry nhìu!! 654647567689
Tính giá trị của các biểu thức sau
1) \(A=1+2+2^2+...+2^{2015}\)
2) \(B=\left(\dfrac{1}{4}-1\right)\cdot\left(\dfrac{1}{9}-1\right)\cdot\left(\dfrac{1}{16}-1\right)\cdot\cdot\cdot\cdot\cdot\left(\dfrac{1}{400}-1\right)\)
3) \(C=\left(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+\dfrac{1}{14\cdot19}+...+\dfrac{1}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)
4) \(D=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)
5) \(E=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}-\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}-\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}-\dfrac{3}{2004}}\)
6) Cho 13+23+...+103=3025
Tính S= 23+43+63+...+203