Những câu hỏi liên quan
Dương Thiên Tuệ
Xem chi tiết
Phạm Đức Dũng
Xem chi tiết
Nguyễn Ý Nhi
3 tháng 2 2020 lúc 20:58

1.Ta có: \(c+ab=\left(a+b+c\right)c+ab\)

\(=ac+bc+c^2+ab\)

\(=a\left(b+c\right)+c\left(b+c\right)\)

\(=\left(b+c\right)\left(a+b\right)\)

CMTT \(a+bc=\left(c+a\right)\left(b+c\right)\)

\(b+ca=\left(b+c\right)\left(a+b\right)\)

Từ đó \(P=\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)

Ta có: \(\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}\right)\)( theo BĐT AM-GM)

CMTT\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{a+b}\right)\)

\(\Rightarrow P\le\frac{1}{2}.3\)

\(\Rightarrow P\le\frac{3}{2}\)

Dấu"="xảy ra \(\Leftrightarrow a=b=c\)

Vậy /...

Bình luận (0)
 Khách vãng lai đã xóa
Phan Gia Huy
3 tháng 2 2020 lúc 21:37

\(\frac{a+1}{b^2+1}=a+1-\frac{ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}\)

\(=a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab+b}{2}\)

Tương tự rồi cộng lại:

\(RHS\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)

\(\ge a+b+c+3-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\)

Dấu "=" xảy ra tại \(a=b=c=1\)

Bình luận (0)
 Khách vãng lai đã xóa
Kudo Shinichi
4 tháng 2 2020 lúc 15:00

Bài 1 : 

\(P=\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\)

\(P=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}+\sqrt{\frac{bc}{a\left(a+b+c\right)+bc}}\)

\(+\sqrt{\frac{ca}{b\left(a+b+c\right)+ca}}\)

\(P=\sqrt{\frac{ab}{ac+bc+c^2+ab}}+\sqrt{\frac{bc}{a^2+ab+ac+bc}}\)

\(+\sqrt{\frac{ca}{ab+b^2+bc+ca}}\)

\(P=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)

Áp dụng bất đẳng thức Cauchy cho 2 bô só thực không âm

\(\Rightarrow\hept{\begin{cases}\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{\frac{a}{a+c}+\frac{b}{b+c}}{2}\\\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}\\\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\le\frac{\frac{a}{a+b}+\frac{c}{b+c}}{2}\end{cases}}\)

\(\Rightarrow VT\)

\(\le\frac{\left(\frac{a}{a+c}+\frac{c}{a+c}\right)+\left(\frac{b}{b+c}+\frac{c}{b+c}\right)+\left(\frac{b}{a+b}+\frac{a}{a+b}\right)}{2}\)

\(\Rightarrow VT\le\frac{\frac{a+c}{a+c}+\frac{b+c}{b+c}+\frac{a+b}{a+b}}{2}=\frac{3}{2}\)

\(\Rightarrow P\le\frac{3}{2}\)

Vậy \(P_{max}=\frac{3}{2}\)

Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)

Chúc bạn học tốt !!!

Bình luận (0)
 Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Đặng Ngọc Quỳnh
5 tháng 1 2021 lúc 12:35

Bình luận (0)
 Khách vãng lai đã xóa
Đặng Ngọc Quỳnh
5 tháng 1 2021 lúc 12:37

.

Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3

Chứng minh rằng với mọi k > 0 ta luôn có

Bình luận (0)
 Khách vãng lai đã xóa
Đặng Ngọc Quỳnh
5 tháng 1 2021 lúc 12:38

Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3

Chứng minh rằng với mọi k > 0 ta luôn có.

Bình luận (0)
 Khách vãng lai đã xóa
Đàm Minh Quang
Xem chi tiết
kagamine rin len
28 tháng 2 2017 lúc 19:38

2a)với a,b,c là các số thực ta có 

\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)

\(\Rightarrow\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left|a+b\right|\)

tương tự \(\sqrt{b^2-bc+c^2}\ge\frac{1}{2}\left|b+c\right|\)

tương tự \(\sqrt{c^2-ca+a^2}\ge\frac{1}{2}\left|a+c\right|\)

cộng từng vế mỗi BĐT ta được \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)

dấu "=" xảy ra khi và chỉ khi a=b=c

Bình luận (0)
Vô Danh Tiểu Tốt
Xem chi tiết
lili
19 tháng 3 2020 lúc 22:17

đề bài sai rồi bạn nhé check lại đi 

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
20 tháng 3 2020 lúc 6:01

Sửa đề: \(\frac{a}{b}+\frac{a}{c}+\frac{c}{b}+\frac{c}{a}+\frac{b}{c}+\frac{b}{a}\ge\sqrt{2}\left(\Sigma\sqrt{\frac{1-a}{a}}\right)\)

or \(\Sigma\frac{b+c}{a}\ge\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}\)

Theo AM-GM:\(\frac{b+c}{a}\ge2\sqrt{\frac{2\left(b+c\right)}{a}}-2\)

Tương tự và cộng lại: \(VT\ge2\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}-6\)

Mà: \(\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}\ge3\sqrt[6]{\frac{8\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge6\)

Từ đó: \(VT\ge2\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}-\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}=VP\)

Done!

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
23 tháng 3 2020 lúc 16:18

Vào ghé thăm nhà mình nhé: See method from solution! Cảm ơn bạn.

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Phương Thảo
Xem chi tiết
Trần Lâm Thiên Hương
Xem chi tiết
KIM TAE HYUNG
Xem chi tiết
Thảo
30 tháng 9 2020 lúc 11:40

k có số dương nào để tổng trên bằng 0

Bình luận (0)
 Khách vãng lai đã xóa
Trịnh Hoàng Đông Giang
Xem chi tiết